Diody elektroluminescencyjne świecą w ultrafiolecie
Diody LED oparte na nieorganicznych nanokryształach to szansa dla diagnostyki środowiskowej i biomedycznej ponieważ są tanie, wytrzymałe i stabilne chemicznie. Niestety rozwój został zahamowany przez trudności z emisją w ultrafiolecie. Sergio Brovelli z Państwowego Laboratorium Los Alamos, we współpracy z zespołem badawczym kierowanym przez Alberto Paleari z Uniwersytetu Milano-Bicocca we Włoszech opisują proces produkcyjny, który umożliwia rozwiązanie tego problemu i który otwiera drogę do nowych zastosowań.
Bovelli uważa, że świat potrzebuje urządzeń emitujących światło, które mogłyby być stosowane w diagnostyce biomedycznej i w medycynie, zarówno jako aktywne platformy diagnostyczne działające w mikrosystemach „lab-on-chip”, jak i jako źródła światła, które mogłyby być wszczepiane do organizmu aby wywołać określone reakcje fotochemiczne. Takie urządzenia mogłyby na przykład selektywnie aktywować światłoczułe leki celem uzyskania lepszych wyników leczenia, albo badać obecność fluorescencyjnych markerów w diagnostyce medycznej. Materiały te musiałyby być wykonane tanio i na dużą skalę, a także włączone do istniejącej technologii.
Praca opisuje nowy materiał, bazowany na szkle i zdolny do emitowania światła w widmie ultrafioletowym oraz możliwy do zintegrowania z chipami krzemowymi, które są podstawowym składnikiem współczesnych technologii elektronicznych.
Nowe urządzenia są nieorganiczne; łączą obojętność chemiczną i mechaniczną stabilność szkła z właściwościami przewodności elektrycznej i elektroluminescencji (czyli zdolności materiału do emisji światła w reakcji na działanie prądu elektrycznego). W rezultacie mogą być stosowane w trudnych warunkach, takich jak zanurzenie w roztworach fizjologicznych lub bezpośrednie wszczepienie do organizmu. Okazało się to możliwe dzięki opracowaniu nowej strategii syntezy, która umożliwiła wytwarzanie wszystkich nieorganicznych diod LED za pośrednictwem metody mokrej chemii, czyli szeregu prostych reakcji chemicznych w zlewce. Co ważne, metoda jest dostosowana do ilości przemysłowych przy bardzo niskich kosztach początkowych. Ponadto dzięki starannie zaprojektowanym nanokryształom osadzonym w szkle diody świecą w ultrafiolecie.
W tradycyjnych elektroluminescencyjnych diodach emisja światła następuje w wyniku gwałtownego styku dwóch półprzewodników. Zastosowana tu konstrukcja jest inna, ponieważ umożliwia produkcję materiału, który zachowuje się jak zespół węzłów półprzewodnikowych umieszczonych na szkle. Nowa koncepcja opiera się na zbiorze najbardziej zaawansowanych strategii w nauce o nanokryształach, łącząc zalety nanometrycznych materiałów złożonych się z więcej niż jednego komponentów. W tym przypadku aktywna część urządzenia składa się z nanokryształów dwutlenku cyny pokrytych powłoką tlenku cyny osadzonego w zwykłym szkle: dzięki modyfikowaniu grubości powłoki możliwe jest sterowanie elektryczne całego materiału.
Praca powstała przy wsparciu finansowym włoskiej fundacji Cariplo w ramach Projektu 20060656 Federacji Rosyjskiej przy dotacji 11.G34.31.0027, fundacji Silvio Tronchetti Provera oraz Programu Badawczo-Rozwojowego Państwowego Laboratorium Los Alamos.
Źródło: Agnieszka Ciećwierz/ http://www.nanonet.pl/ www.lanl.gov
Tagi: dioda, LED, promieniowanie, ultrafiolet, nanostruktury, nanokryształy, biomedycna, diagnostyka, lab, laboratorium, laboratoria
wstecz Podziel się ze znajomymi
Najdokładniejsze systemy satelitarnego transferu czasu
Nie zawsze zegar atomowy działa lepiej niż kwarcowy.
Ponad połowa chorych z SARS-CoV2 cierpi na długi covid
Przez długi czas może mieć takie objawy jak zmęczenie.
Uniwersytet Warszawski będzie kształcić kadry dla energetyki jądrowej
Przekazał Wydział Fizyki UW.
Recenzje