Jak bakterie bronią się przed wirusami?
Fag zawierający taką samą sekwencję zostanie rozpoznany przez układ CRISPR-Cas i zniszczony, co oznacza, że bakteria jest teraz odporna na ten fag dzięki działaniu układu CRISPR-Cas. Niewiele wiadomo jednak o koewolucji fagów i tego układu odpornościowego. Główny badacz z zespołu projektu PHAGECOM finansowanego ze środków UE, dr Stineke van Houte, wyjaśnia: „szybka ewolucja układu odpornościowego CRISPR-Cas może być bardzo realnym problemem terapii fagowej, a zatem ustalenie, kiedy układ odpornościowy CRISPR-Cas ewoluuje i jak fagi radzą sobie z układem CRISPR-Cas znacznie ułatwi opracowywanie i optymalizowanie terapii fagowych oraz ocenę ich ograniczeń.
„Koewolucyjny wyścig zbrojeń”
Jednym z obszarów narażonych na straty finansowe spowodowane przez fagi, jest przemysł mleczarski, gdzie występuje ryzyko zakażenia bakterii wytwarzających jogurt. Uzyskanie wglądu w interakcje zachodzące pomiędzy nimi może pomóc w opracowaniu strategii zwalczania infekcji fagowych w przemyśle mleczarskim oraz w zaprojektowaniu skuteczniejszej terapii fagowej w celu leczenia zakażeń bakteryjnych u ludzi.
Głębsza analiza przyniosła zaskakujące wnioski, jak wyjaśnia dr van Houte: „pierwotnie zakładaliśmy, że będziemy świadkami znacznej koewolucji między bakteriami i fagami. Jednak prace projektowe wykazały, że bakterie powodowały wymieranie fagów w ciągu kilku dni od rozpoczęcia infekcji, a zatem nie występowała koewolucja.
Każda bakteria oporna na działanie układu CRISPR w populacji zawierała inną sekwencję rozdzielającą w swoim locus CRISPR, jak opisano powyżej. Zapobiega to mutacji fagów, dzięki której mogłyby normalnie pokonać jedną sekwencję rozdzielającą, i prowadzi do ich wyginięcia.
Jednak geny anty-CRISPR na genomach fagów mogą to zmienić. Geny anty-CRISPR kodują małe białka, które blokują układy CRISPR-Cas. Wyniki badań wykazały, że fagi zawierające geny anty-CRISPR nie są w stanie pokonać układu CRISPR-Cas, gdy działają same, ale udaje im się to, gdy działają wspólnie.
Nieoczekiwane odkrycia
Te dwa odkrycia to najważniejsze wyniki projektu. „Pierwsze ustalenie było nieoczekiwane, ponieważ, zgodnie z wiedzą na temat interakcji molekularnych między CRISPR-Cas i DNA fagów, oczekiwano, że bakterie i fagi będą intensywnie koewoluować. Drugie odkrycie jest ważne w mojej opinii, ponieważ dostarcza pierwszych informacji na temat konsekwencji działania układu anty-CRISPR na jego fagi i bakterie, które zakażają”, wyjaśnia dr van Houte.
Oprócz zabezpieczenia przed infekcjami fagowymi układ CRISPR-Cas może również chronić przed innymi pasożytami genetycznymi, takimi jak plazmidy, które są okrągłymi kawałkami „samolubnego” DNA zdolnymi do rozprzestrzeniania się między bakteriami. W ramach projektu PHAGECOM sprawdzono, czy systemy CRISPR-Cas mogą usuwać plazmidy ze społeczności drobnoustrojów.
Jak wyjaśnia dr van Houte, odkrycie to jest nie tylko interesujące z naukowego punktu widzenia, ale może być także użyteczne w wielu istotnych zastosowaniach. Wiele problemów, z jakimi obecnie borykamy się w związku z lekoopornymi bakteriami, wynika z rozprzestrzeniania się oporności na środki przeciwdrobnoustrojowe (AMR) za pośrednictwem plazmidów przenoszących się między bakteriami.
„Gdybyśmy mogli zaprojektować strategię dostarczania systemów CRISPR-Cas do społeczności drobnoustrojów zawierających geny AMR (np. w jelitach pacjenta cierpiącego na nawracające infekcje wywoływane chorobotwórczymi bakteriami), mogłoby to doprowadzić do opracowania nowych technologii w celu zmniejszenia poziomów AMR, a tym samym umożliwiłoby ich ponowne uczulenie na antybiotyki.
Wnioski z projektu pomagają badaczom zrozumieć, w jaki sposób fagi wchodzą w interakcje z gospodarzami bakterii opornych na CRISPR. „Jest to istotne dla różnych zastosowań, ale najważniejszym z nich jest terapia fagowa – coraz więcej osób zdaje sobie sprawę, że fagi mogą być niezwykle skutecznym sposobem kontrolowania infekcji bakteryjnych, szczególnie tam, gdzie nie działają antybiotyki”, mówi dr Stineke van Houte.
Źródło: www.cordis.europa.eu
wstecz Podziel się ze znajomymi
Najdokładniejsze systemy satelitarnego transferu czasu
Nie zawsze zegar atomowy działa lepiej niż kwarcowy.
Ponad połowa chorych z SARS-CoV2 cierpi na długi covid
Przez długi czas może mieć takie objawy jak zmęczenie.
Uniwersytet Warszawski będzie kształcić kadry dla energetyki jądrowej
Przekazał Wydział Fizyki UW.
Recenzje