Repelent doskonały
Wcześniej naukowcy koncentrowali się na liściach lotosu, które zainspirowały serię materiałów superhydrofobowych. Nie sprawdzały się one jednak w przypadku cieczy organicznych lub złożonych, które mają niższe napięcie powierzchniowe niż woda i pod wpływem lekkiego nacisku zaczynają wsiąkać w powierzchnię. Sytuacja nie była patowa, wystarczyło bowiem poszukać innego przykładu z natury, by z łatwością rozwiązać ten problem. Jak wyjaśnia prof. Joanna Aizenberg ze Szkoły Inżynierii i Nauk Stosowanych Uniwersytetu Harvarda, na liściach pułapkowych dzbaneczników znajdują się drobne guzki utrzymujące na miejscu warstwę wody, która oddziałuje na cząsteczki oleju (chodzi o oddziaływania między cząsteczkami polarnymi i niepolarnymi). W takiej sytuacji tłuszcze pokrywające stopy owadów nie na wiele się zdają i ofiara wpada wprost do soków trawiennych drapieżnej rośliny.
Zespół z Harvardu uważa, że nowy materiał znajdzie zastosowanie w transporcie paliw, technologiach zapobiegania oblodzeniu i porastaniu kadłubów statków czy w procedurach związanych z wykorzystaniem cieczy biomedycznych (np. w cewnikach). Zainspirowani przez dzbaneczniki, opracowaliśmy nową powłokę, która przewyższa swoje naturalne i syntetyczne odpowiedniki, oferując proste i wszechstronne rozwiązanie w zakresie repelencji cieczy i ciał stałych – podkreśla Aizenberg.
W przypadku lotosu wodoodporność jest skutkiem specyficznego ukształtowania powierzchni liści. Tworzą się poduszki powietrzne, na których skrapla się woda. Efekt lotosu zanika jednak, gdy powierzchnia jest uszkodzona albo działają ekstremalne warunki. Wtedy krople przylegają do niej albo wsiąkają, zamiast spływać. Poza tym okazało się, że wyprodukowanie materiałów wzorowanych na lotosie jest drogie i trudne.
Dzbaneczniki nie bazują na wypełnionych powietrzem nanozadziorach. Na powierzchni liścia pułapkowego tworzy się po prostu warstwa wody. Tak-Sing Wong z laboratorium Aizenberg porównuje sytuację owada do samochodu wpadającego w poślizg na drodze pokrytej cienką warstewką deszczówki. Biorąc przykład z rośliny, Amerykanie zaprojektowali nanoporowaty materiał, pokryty cieczą spełniającą funkcję smaru. Nadano mu nazwę SLIPS (od Slippery Liquid-Infused Porous Surfaces). SLIPS wykazuje praktycznie zerową retencję, gdyż potrzeba bardzo drobnego przechylenia, by ciecz lub ciało stałe zaczęło się ześlizgiwać i odpadło od powierzchni – twierdzi Aizenberg. Ciecz w roli repelenta ma jeszcze jeden duży plus. Jest właściwie [idealnie] gładka i wolna od defektów. Nawet gdy uszkodziliśmy próbkę, rysując ją nożem, powierzchnia niemal natychmiast się naprawiła i właściwości "odstraszające" zostały zachowane. W odróżnieniu od lotosu, SLIPS można wyprodukować w wersji przezroczystej, przez co jest on idealny do celów optycznych i w aplikacjach samoczyszczących – dodaje Wong.
Akademicy ujawniają, że efekt bliski wyeliminowania tarcia utrzymuje się także w trudnych warunkach: przy wysokim ciśnieniu (675 atmosfer, co odpowiada zanurzeniu na głębokość 7 km), wilgotności i niskich temperaturach. Zespół przeprowadził eksperyment na zewnątrz podczas burzy śnieżnej i SLIPS zapobiegał osadzaniu lodu. Do produkcji SLIPS można wykorzystać jakikolwiek porowaty materiał. Nawet mrówki się na nim ślizgają, całkiem jak na naturalnym wzorcu z dzbanecznika. Obecnie trwa proces patentowania wynalazku.
Autor: Anna Błońska
Źródło: www.seas.harvard.edu
Fot.: www.botany.org
Najdokładniejsze systemy satelitarnego transferu czasu
Nie zawsze zegar atomowy działa lepiej niż kwarcowy.
Ponad połowa chorych z SARS-CoV2 cierpi na długi covid
Przez długi czas może mieć takie objawy jak zmęczenie.
Uniwersytet Warszawski będzie kształcić kadry dla energetyki jądrowej
Przekazał Wydział Fizyki UW.
Recenzje