Badania gleju w siatkówce pomogą zrozumieć patologiczne procesy w mózgu
Jak przypominają autorzy artykułu, prawidłowe funkcjonowanie mózgu wymaga współpracy komórek nerwowych z komórkami gleju, które pełnią bardzo różnorodne funkcje.
Jednym z rodzajów komórek glejowych są astrocyty, których wypustki szczelnie otaczają połączenia pomiędzy komórkami nerwowymi, tzw. synapsy. Astrocyty dostarczają neuronom niezbędnej energii, a ponadto wpływają na komunikację między nimi za pośrednictwem wydzielanych przez siebie substancji. Istnieją dowody, że niektóre z tych substancji, np. glutaminian mogą być wydzielane przez egzocytozę, czyli połączenie pęcherzyków z wewnętrzną błoną komórkową, co prowadzi do uwolnienia zawartości pęcherzyków do przestrzeni zewnątrzkomórkowej.
Do niedawna zjawisko to było przypisywane wyłącznie neuronom. Najnowsze wyniki badań międzynarodowej grupy naukowców z Polski, Francji i Niemiec pod kierunkiem dr. Franka W. Pfriegera z Europejskiego Instytutu Neurobiologii w Strasburgu dostarczają kolejnych dowodów na to, że komórki glejowe wydzielają glutaminian na drodze egzocytozy (zjawisko to jest określane w tym wypadku jako glejotransmisja).
Zespół, w którego skład weszli polscy naukowcy – dr Michał Ślęzak, mgr Klaudia Szklarczyk i prof. Ryszard Przewłocki z Zakładu Neurofarmakologii Molekularnej Instytutu Farmakologii PAN w Krakowie - badał znaczenie „glejotransmisji” w funkcjach siatkówki oka, będącej pierwszą stacją neuroprzekaźnikową w procesie widzenia.
W siatkówce światłoczułe neurony oraz komórki glejowe (tzw. komórki gleju Mullera) komunikują się między sobą. Badacze wytworzyli zmodyfikowane genetycznie (tzw. transgeniczne) myszy, u których zahamowano uwalnianie pęcherzykowe (egzocytozę) z komórek gleju. Przy pomocy nowych technik pomiarowych naukowcy wykazali następnie, że prowadzi to do spadku wydzielania glutamininanu z komórek glejowych siatkówki. Ich zdaniem, ta obserwacja dowodzi istnienia zjawiska „glejotransmisji”.
Badania funkcjonalne siatkówki transgenicznych zwierząt nie wykazały, by zablokowanie egzocytozy z komórek glejowych powodowało zmiany w morfologii siatkówki czy zaburzenia procesu widzenia u myszy.
Okazało się jednak, że uwalnianie glutaminianu z gleju jest konieczne dla regulacji objętości komórek siatkówki w sytuacji przypominającej zmiany patologiczne. Zarówno komórki glejowe, jak i komórki zwojowe siatkówki zwierząt transgenicznych umieszczone w środowisku hipotonicznym nabierały wody i pęczniały, podczas gdy w siatkówkach zwierząt niezmienionych genetycznie nie obserwowano tego zjawiska. Dodanie glutaminanu do środowiska przywracało zdolność regulacji objętości komórek.
„Powyższe badania rozwijają wiedzę dotyczącą znaczenia +glejotransmisji+, wskazując na rolę tego zjawiska w patologiach układu nerwowego” – komentuje współautor pracy dr Michał Ślęzak.
Według prof. Ryszarda Przewłockiego, najnowsze odkrycie może przyczynić się w przyszłości do lepszego poznania mechanizmów obrzęku tkanki nerwowej po urazach, udarze mózgu czy infekcjach ośrodkowego układu nerwowego.
Źródło: http://www.naukawpolsce.pap.com.pl
Najdokładniejsze systemy satelitarnego transferu czasu
Nie zawsze zegar atomowy działa lepiej niż kwarcowy.
Ponad połowa chorych z SARS-CoV2 cierpi na długi covid
Przez długi czas może mieć takie objawy jak zmęczenie.
Uniwersytet Warszawski będzie kształcić kadry dla energetyki jądrowej
Przekazał Wydział Fizyki UW.
Recenzje