Prace nad mechanizmem pamięci komórkowej drogą do identyfikacji mutacji chorobotwórczych
Choć niewtajemniczonym może się to wydać mało naukowe, sposób w jaki nasze komórki nieustannie się dzielą, tworząc dwie identyczne kopie, ma kluczowe znaczenie dla naszej egzystencji. Bez podziału komórek nie moglibyśmy się rozwijać ani nie goiłyby się rany. Tak naprawdę większość gatunków zamieszkujących naszą planetę, w tym ludzie, po prostu by nie istniała.
Mimo ich tak ogromnej wagi, niektóre z mechanizmów leżących u podstaw podziału komórek nadal nie zostały poznane. Tak właśnie było w przypadku przekazywania "pamięci komórek", który to proces umożliwia komórkom potomnym dziedziczenie funkcji - na przykład produkcji insuliny - od komórek macierzystych. Pomimo wieloletnich, intensywnych prac badawczych nie odkryto ogólnego mechanizmu, za pomocą którego można by objaśnić, jak się to odbywa.
Proces trzeba przyznać jest zadziwiający: czynniki transkrypcyjne - białka wiążące się z określonymi sekwencjami DNA, które kontrolują przepływ informacji genetycznych i określają w ten sposób tożsamość i funkcję komórki - są wymazywane przy każdym podziale komórki. Co zaskakujące schematy wiązań są ostatecznie przywracane zarówno w komórkach macierzystych, jak i potomnych. Zagadka? Już nie - twierdzi Jussi Taipale, profesor na Wydziale Bionauk i Żywienia (Bionut) Karolinska Institutet i kierownik naukowy zespołu, który dokonał odkrycia.
"Problem polega na tym, że w komórce jest tak dużo DNA, iż czynniki transkrypcyjne nie byłyby w stanie odnaleźć drogi powrotnej w rozsądnym czasie. Teraz jednak odkryliśmy możliwy mechanizm funkcjonowania pamięci komórkowej i sposób, w jaki pomaga on komórce zapamiętać porządek, jaki istniał przed podziałem, ułatwiając czynnikom transkrypcyjnym odszukanie prawidłowych miejsc" - wyjaśnia Jussi Taipale.
Po opracowaniu najbardziej kompletnej jak dotychczas mapy czynników transkrypcyjnych w komórce, grupa odkryła, że duży kompleks białkowy o nazwie kohezyna tworzy pierścień wokół dwóch łańcuchów DNA, które powstają w czasie podziału komórki, oznaczając na DNA praktycznie wszystkie miejsca wiązania czynników transkrypcyjnych. Kohezyna otacza łańcuch DNA, a kompleksy białkowe replikujące DNA mogą przechodzić przez pierścień bez przesuwania go. Ponieważ dwa nowe łańcuchy DNA są spięte pierścieniem, do ich oznaczenia potrzebna jest wyłącznie kohezyna, która pomaga w ten sposób czynnikom transkrypcyjnym w odnajdywaniu pierwotnego regionu wiązania na obydwu łańcuchach DNA.
"Zanim zyskamy pewność niezbędne są dalsze badania, ale jak dotychczas wszystkie doświadczenia potwierdzają nasz model" - zauważa Martin Enge, adiunkt na Wydziale Bionut Karolinska Institutet.
Czynniki transkrypcyjne odgrywają decydującą rolę w wielu chorobach, między innymi nowotworach i schorzeniach dziedzicznych. W przyszłości odkrycie zespołu może mieć bezpośrednie następstwa dla osób cierpiących na nowotwory i choroby dziedziczne, dzięki wykorzystaniu kohezyny do oznaczania, które sekwencje DNA mogą zawierać mutacje chorobotwórcze.
"Obecnie analizujemy sekwencje DNA znajdujące się bezpośrednio w genach, co stanowi około 3% genomu. Niemniej większość mutacji wywołujących nowotwory zlokalizowana jest poza genami. Nie jesteśmy w stanie przestudiować ich w rzetelny sposób - genom jest po prostu zbyt duży. Sama analiza sekwencji DNA wiążących się z kohezyną, z grubsza 1% genomu, umożliwiłaby nam przestudiowanie mutacji występujących u danej osoby i ułatwienie prac badawczych nad rozpoznawaniem nowych, szkodliwych mutacji" - podsumowuje Martin Enge.
Projekt uzyskał wsparcie Ośrodka Bionauk Karolinska Institutet, Knut and Alice Wallenberg Foundation, Szwedzkiej Rady ds. Badań Naukowych, Science for Life Laboratory, Swedish Cancer Foundation, a także ze środków projektu GROWTHCONTROL w ramach przyznanego przez ERBN grantu dla zaawansowanych naukowców oraz ze środków projektu SYSCOL realizowanego w obrębie tematu Zdrowie 7PR.
Więcej informacji:
Karolinska Institutet
http://ki.se/?l=en
SYSCOL
http://syscol-project.eu/
Karta informacji o projekcie:
http://cordis.europa.eu/projects/rcn/97658_pl.html
Źródło: http://cordis.europa.eu
Najdokładniejsze systemy satelitarnego transferu czasu
Nie zawsze zegar atomowy działa lepiej niż kwarcowy.
Ponad połowa chorych z SARS-CoV2 cierpi na długi covid
Przez długi czas może mieć takie objawy jak zmęczenie.
Uniwersytet Warszawski będzie kształcić kadry dla energetyki jądrowej
Przekazał Wydział Fizyki UW.
Recenzje