Gąbki jako źródło bakterii przeciwdrobnoustrojowych
Farmakolodzy mają obecnie dwa ważne zadania – znalezienie nowych związków chemicznych, które mogłyby być stosowane w leczeniu raka, oraz identyfikacja bakterii o potencjale przeciwdrobnoustrojowym. Naukowcy zainteresowali się obecnie organizmami morskimi, aby sprawdzić, co mają one do zaoferowania.
Oporność na antybiotyki i nowe sposoby leczenia guzów nowotworowych stanowią dwa kluczowe wyzwania stojące przed naukowcami zajmujących się różnymi dyscyplinami. Badania nad związkami molekularnymi z otaczających nas organizmów są już prowadzone, a obecnie naukowcy postanowili zająć się życiem pod wodą.
Zespół finansowanego ze środków UE projektu BluePharmTrain skupiał się na gąbkach morskich, ponieważ są one najbogatszym oceanicznych źródłem rozmaitych związków chemicznych. Odkryto wiele interesujących cząsteczek, ale jak dotąd nie znaleziono odpowiedniego sposobu, aby je pozyskiwać w dużych ilościach.
Zbadanie ich ogromnego potencjału jest trudne, ponieważ zazwyczaj brakuje materiału nawet do rozpoczęcia badań klinicznych. Celem projektu było zatem rozwiązanie problemu tego wąskiego gardła.
Podwodne bogactwo farmakologiczne
Morskie gąbki zawierają niezwykle różnorodne populacje drobnoustrojów i są światowymi rekordzistami pod względem wytwarzania cząsteczek bioaktywnych. Wcześniejsze badania ukierunkowane na rozwój gąbek lub związanych z nimi drobnoustrojów w celu wytwarzania związków bioaktywnych na potrzeby zapewnienia materiału biologicznego do badań klinicznych w dużej mierze kończyły się niepowodzeniem.
„Innowacyjność naszego projektu polegała na tym, że zintegrowaliśmy rewolucyjne techniki sekwencjonowania DNA”, mówi koordynator projektu, dr Detmer Sipkem, z Uniwersytetu Wageningen w Holandii.
Jak tłumaczy dr Sipkema, ostatnie koncepcyjne i technologiczne odkrycia w dziedzinie genomiki, transkryptomiki i proteomiki („omika”) zmieniły sposób postrzegania genów, gatunków i społeczności. Te innowacje mają również wpływ na inne dziedziny, takie jak ekologia i biotechnologia. Przedstawiają „stare problemy” w nowym świetle i pozwalają badaczom wyjść poza wcześniejsze ograniczenia.
Zespół projektu BluePharmTrain wykorzystał te innowacyjne podejścia, aby uzyskać lepszy obraz fizjologicznych reakcji gąbek w ich naturalnym środowisku, w tym ich reakcji na stres, np. związany ze zmianą temperatury. Naukowcom szczególnie zależało na zbadaniu symbiontów bakterii, których obecnie nie można hodować, w celu ustalenia wysoce dopasowanych metod hodowli tych bakterii.
„Poszukiwaliśmy wolno żyjących bakterii, które zawierają klastry genów najbardziej zbliżone do tych wykrytych w gąbkach”, mówi dr Sipkema.
Znalezienie gąbek i „utrwalenie” ich w celu zapewnienia ich stabilności było prostym zadaniem: zespół zbierał gąbki i przekazywał je kolegom oczekującym z utrwalaczem. Następnie wyekstrahowano DNA i RNA.
„Uzyskaliśmy bardzo mieszane wyniki, które przypominały zbiór przypadkowych elementów różnych układanek”. Poprzez wykorzystanie wysoce zaawansowanego oprogramowania dr Sipkema i jego zespół zdołali jednak zinterpretować większość danych. „Dało nam to wgląd w genomy najpowszechniej występujących obfitych symbiotycznych bakterii (które są prawdziwymi producentami większości cząsteczek) i pozwoliło zidentyfikować gospodarza klastrów genów kodujących pożądane cząsteczki”.
Nowe możliwości w zakresie leczenia farmakologicznego
Po rozszyfrowaniu tych łamigłówek zespół projektu zyskał nowe informacje na temat cech metabolizmu bakterii. Jak mówi dr Sipkema: „Przykładowo teraz wiemy więcej o bakteriach odpowiedzialnych za produkcję terpenów z wykorzystaniem tiocyjanianów (które mają właściwości przeciwdrobnoustrojowe)”. Zespół ustalił również, co może być potrzebne do wyizolowania glikoprotein i glikolipidów obecnych w powszechnie występujących symbiontach gąbkowych.
Korzystając z analizy bioinformatycznej, partnerzy projektu zdołali wyśledzić wolno żyjącą bakterię, która wytwarza związek bardzo zbliżony do politeonamidu. Politeonamidy to wysoce cytotoksyczne cząsteczki wytwarzane przez, jak odkrył zespół projektu, symbiotyczne bakterie pochodzące z gąbki Theonella swinhoei. Naukowcom udało się genetycznie zmodyfikować tę wolno żyjącą bakterię, aby umożliwić wytwarzanie różnych cząsteczek podobnych do politeonamidu o różnych właściwościach farmakologicznych.
Korzystny wpływ projektu
Dr Sipkema ma pewność, że współpraca ponad granicami miała bardzo korzystny wpływ na jego badania. „Sieć naprawdę działała jako zespół. Nawiązano bardzo silne partnerstwa w celu prowadzenia badań, których partnerzy nie byliby w stanie zrealizować samodzielnie. Dzięki temu działaliśmy szybciej i wydajniej rozporządzaliśmy funduszami na badania”, mówi.
„Współpraca nawiązana w trakcie projektu jest i będzie kontynuowana przez jakiś czas. Chciałbym wykorzystać powstałą sieć i iść dalej, jednocześnie czerpiąc korzyści z opracowanego programu szkoleniowego i wspaniałego ducha współpracy”, mówi dr Sipkema.
Źródło: www.cordis.europa.eu
Najdokładniejsze systemy satelitarnego transferu czasu
Nie zawsze zegar atomowy działa lepiej niż kwarcowy.
Ponad połowa chorych z SARS-CoV2 cierpi na długi covid
Przez długi czas może mieć takie objawy jak zmęczenie.
Uniwersytet Warszawski będzie kształcić kadry dla energetyki jądrowej
Przekazał Wydział Fizyki UW.
Recenzje