Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X

Naukowy styl życia

Nauka i biznes

Strona główna Informacje

Czym różnią się między sobą testy na koronawirusa


Wyniki fałszywie pozytywne, fałszywie negatywne, czułość, specyficzność - to pojęcia oceniające skuteczność testów przeprowadzanych m.in. na obecność koronawirusa. Co oznaczają te sformułowania, wyjaśnia prof. Marek Majewski z Uniwersytetu Łódzkiego. Dla zobrazowania porównuje pacjentów do klientów banku, starających się o kredyt.

Jak tłumaczy naukowiec z Wydziału Matematyki i Informatyki UŁ w opracowaniu przekazanym PAP przez Uniwersytet Łódzki, pojęcia te są używane zarówno w diagnostyce medycznej, jak i w analizie danych, gdzie konstruuje się modele matematyczne.

"Wyobraźmy sobie zbiór danych zawierający informacje o historii kont bankowych klientów pewnego banku. Model klasyfikacyjny może nam w tym przypadku pomóc w odpowiedzi na pytanie, czy dany klient będzie (lub nie będzie) solidnie spłacać kredyt, o który wnioskuje - proponuje prof. Majewski. - Zupełnie podobna sytuacja jest w przypadku pewnych testów diagnostycznych. Mają one odpowiedzieć na pytanie, czy pacjent należy do jednej z dwóch kategorii: jest chory na pewną chorobę, czy też jest zdrowy."

Naukowiec wyjaśnia, że jakość takich modeli ocenia się za pomocą tych samych technik i pojęć. Potrzeba do tego pewnego zbioru danych, np. stu klientów albo stu pacjentów, o których wiadomo, że będą (lub nie będą) spłacać kredyt albo czy są (lub nie są zakażeni). Taki zbiór nazywa się zbiorem testowym.

W przypadku klientów banku zbiór testowy może być zbudowany na podstawie danych o historii klientów. W przypadku medycyny – będzie to porównanie z pewnym (absolutnie wiarygodnym) testem referencyjnym (tzw. gold standard).

Inne testy ocenia się, porównując je z tym "złotym" testem". Dla każdej osoby ze "złotego" zbioru przeprowadza się oceniany test i porównuje jego wynik go z danymi rzeczywistymi. Jak wylicza prof. Majewski, istnieją cztery możliwe wyniki takiego porównania.

Po pierwsze - wynik testu jest pozytywny, czyli wg testu pacjent jest zakażony, choć w rzeczywistości jest zdrowy. Taki przypadek nazywa się fałszywie pozytywnym (false positive). Po drugie - wynik testu jest pozytywny i w rzeczywistości pacjent jest zakażony. Wtedy wynik jest prawdziwie pozytywny (true positive). Po trzecie - wynik testu jest negatywny, czyli wg testu pacjent jest zdrowy, choć w rzeczywistości pacjent chory – wynik fałszywie negatywny (false negative). I po czwarte - wynik testu jest negatywny i w rzeczywistości pacjent jest zdrowy. To wynik prawdziwie negatywny (true negative).

Liczbę obserwacji, dla których otrzymano poszczególne wyniki, zestawia się zwykle w tabeli (tzw. macierzy pomyłek). Na podstawie macierzy pomyłek wprowadza się parametry danego testu. Prof. Majewski definiuje najważniejsze z nich.

Współczynnik dokładności ACC (accuracy rate) oznacza liczbę obserwacji sklasyfikowanych poprawnie podzieloną przez liczbę wszystkich obserwacji.

Błąd modelu (error rate) oznacza iloraz obserwacji fałszywie sklasyfikowanych, do liczby wszystkich obserwacji.

Czułość (sensitivity) – mierzy proporcję liczby poprawnych pozytywnych klasyfikacji względem liczby wszystkich (prawdziwie) pozytywnych przypadków. Czułość odpowiada na pytanie, jaką część wyników pozytywnych wykrywa test albo jakie jest prawdopodobieństwo, że test wykonany dla osoby chorej wykaże, że jest ona chora.

Specyficzność (specifity) testu to liczba prawdziwie negatywnych klasyfikacji względem wszystkich (prawdziwie) negatywnych przypadków. Specyficzność informuje, jaką część wyników negatywnych wykrywa test albo jakie jest prawdopodobieństwo, że dla osoby zdrowej test wykaże, że osoba jest zdrowa.

Precyzja przewidywania pozytywnego (positive predictive value - PPV) mierzy proporcję prawdziwie pozytywnych klasyfikacji względem wszystkich pozytywnych klasyfikacji. Precyzja przewidywania pozytywnego odpowiada na pytanie, ile z pozytywnie sklasyfikowanych przypadków zostało dobrze sklasyfikowanych albo jeśli wynik testu jest pozytywny, to jakie jest prawdopodobieństwo, że badana osoba jest chora.

Precyzja przewidywania negatywnego (negative predictive value – NPV) to stosunek liczby przypadków prawdziwie negatywnie sklasyfikowanych do wszystkich negatywnych klasyfikacji. Wskaźnik odpowiada na pytanie: jeśli wynik testu jest negatywny, to jakie jest prawdopodobieństwo, że osoba badana jest zdrowa?

"W diagnostyce medycznej do interpretacji dwóch ostatnich wskaźników należy podchodzić ostrożnie ponieważ, jak wykazano, zależą on od tzw. chorobowości (czyli liczby osób aktualnie chorych, ang. prevelence). Przykładowo, wraz ze wzrostem chorobowości PPV również rośnie. Niemniej jednak w analizie danych nadal są one stosowane" - mówi prof. Majewski.

Naukowiec zaznacza, że testy, które dają bardzo wysoką dokładność, zwykle są drogie. Tańsze są na ogół tzw. testy przesiewowe. Jego zdaniem, sensownie jest używać takich testów przesiewowych, które mają wysoką precyzję przewidywania negatywnego. Dają one możliwie najmniej wyników fałszywie negatywnych.


Źródło: pap.pl

Recenzje



http://laboratoria.net/aktualnosci/29658.html
Informacje dnia: Ograniczenie soli w diecie może być groźne Nie mam jeszcze wniosków na temat pochodzenia Covid-19 Najdokładniejsze systemy satelitarnego transferu czasu Ponad połowa chorych z SARS-CoV2 cierpi na długi covid Zintegrować informacje o logistyce Wystawa "Nie to niebo" Ograniczenie soli w diecie może być groźne Nie mam jeszcze wniosków na temat pochodzenia Covid-19 Najdokładniejsze systemy satelitarnego transferu czasu Ponad połowa chorych z SARS-CoV2 cierpi na długi covid Zintegrować informacje o logistyce Wystawa "Nie to niebo" Ograniczenie soli w diecie może być groźne Nie mam jeszcze wniosków na temat pochodzenia Covid-19 Najdokładniejsze systemy satelitarnego transferu czasu Ponad połowa chorych z SARS-CoV2 cierpi na długi covid Zintegrować informacje o logistyce Wystawa "Nie to niebo"

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje