Akceptuję
W ramach naszej witryny stosujemy pliki cookies w celu świadczenia państwu usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczone w Państwa urządzeniu końcowym. Możecie Państwo dokonać w każdym czasie zmiany ustawień dotyczących cookies. Więcej szczegółów w naszej Polityce Prywatności

Zamknij X

Naukowy styl życia

Nauka i biznes

Strona główna Informacje

Sztuczna inteligencja pomaga w diagnozie raka prostaty


Opracowana przez polskich naukowców metoda wykorzystania sztucznej inteligencji opartej na sieci neuronowej może usprawnić diagnostykę raka prostaty i poprawić jej jakość - informuje Ośrodek Przetwarzania Informacji – Państwowy Instytut Badawczy.

Rak prostaty jest – po raku płuca - drugim najczęściej rozpoznawanym nowotworem złośliwym występującym u mężczyzn - zostaje zdiagnozowany u co ósmego z nich, zwykle w starszym wieku. W Polsce z powodu raka prostaty umiera codziennie 15 pacjentów. Dlatego tak ważne jest szybkie wykrycie tej choroby i podjęcie odpowiedniego leczenia - wcześnie wykryty zwykle jest uleczalny. Niestety, w porównaniu do metod wykrywania innych nowotworów diagnostyka raka prostaty jest skomplikowana i trudna.

Zmiany nowotworowe najdokładniej powala zobrazować rezonans magnetyczny (MRI). Jednak badanie prostaty tą metodą jest skomplikowane i trudniejsze niż w przypadku większości nowotworów złośliwych. Trzeba stosować różne sposoby obrazowania i niezbędne jest badanie wielu cech nowotworu, co utrudnia interpretację wyniku i znacznie ją wydłuża. Każdy otrzymany obraz musi być przeanalizowany osobno w oparciu o charakterystyki, które są specyficzne dla tego rodzaju raka. Analiza ta wymaga specjalistycznej wiedzy radiologów, którzy stanowią w Polsce tylko około 2 proc. lekarzy, co dodatkowo wydłuża czas oczekiwania na badanie i właściwą diagnozę. Interpretacja wyników jest subiektywna i zależy od wiedzy i doświadczenia danego radiologa.

"Z naszych badań wynika, że sztuczna inteligencja może skutecznie usprawnić pracę lekarzy. Rezultaty są bardzo obiecujące i jestem przekonany, że także pomogą one innym naukowcom opracować nowoczesne narzędzia technologiczne, mające zastosowanie w diagnostyce nie tylko raka prostaty, ale także i innych chorób” – powiedział dr inż. Jarosław Protasiewicz, dyrektor Ośrodka Przetwarzania Informacji – Państwowego Instytutu Badawczego (OPI PIB), cytowany w prasowym komunikacie.

Naukowcy z Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB opracowali platformę badawczą eRADS, która służy do standaryzacji opisów raportów medycznych. Narzędzie to pozwala obiektywnie ocenić istotność kliniczną zmiany na podstawie pięciostopniowej skali PI-RADS (Prostate Imaging-Reporting and Data System), która umożliwia rozróżnienie zmian istotnych klinicznie. Platforma umożliwia także zbieranie danych z badań, co w przyszłości pomoże stworzyć rozwiązania, które automatycznie będą szacowały cechy istotne klinicznie.

Zastosowano w tym przypadku sztuczną inteligencję do wspomagania procesów decyzyjnych.

Badacze OPI PIB przeprowadzili badania pilotażowe z udziałem 16 pacjentów, diagnozowanych przez dwóch radiologów w Centralnym Szpitalu Klinicznym MSWiA w Warszawie. Specjaliści ci różnili się stażem pracy w zawodzie. Celem badań była ocena rzetelności oraz wstępnej użyteczności klinicznej systemu eRADS.

Wyniki badania pilotażowego są obiecujące - ocenia Ośrodek. Oceny istotności klinicznej zmiany przez radiologów z wykorzystaniem narzędzia opracowanego przez naukowców OPI PIB są bardziej zgodne, niż gdy dokonują oni analizy bez użycia platformy. Zastosowanie eRADS pomaga zmniejszyć różnice między jakością diagnozy lekarzy doświadczonych i niedoświadczonych. Precyzyjna ocena zmian pozwoli znacznie ograniczyć liczbę pacjentów, którzy są wysyłani na biopsję.

"W naszym laboratorium badaliśmy także wykorzystanie w diagnostyce raka prostaty innych obszarów sztucznej inteligencji. Analizowaliśmy zastosowanie narzędzi wykorzystujących uczenie maszynowe i głębokie. Naszym celem było porównanie otrzymanych wyników z diagnozami postawionymi przez doświadczonych i niedoświadczonych radiologów. Model predykcyjny istotności klinicznej zmian, oparty o narzędzia uczenia maszynowego, bazował na cechach obrazu (np. jednorodności) w badanych komórkach i ich otoczeniu. Uzyskaliśmy model trafnie klasyfikujący istotnie klinicznie zmiany z prawdopodobieństwem 75 proc., co można porównać do diagnozy niedoświadczonego lekarza. Najbardziej obiecujące rezultaty otrzymaliśmy jednak z zastosowania wiedzy domenowej w architekturze sieci neuronowych. Opracowane modele dają lepszą jakość diagnozy zmian nowotworowych w porównaniu z ocenami niedoświadczonych i doświadczonych radiologów, stawiając trafną diagnozę z prawdopodobieństwem 84 proc." – mówi Piotr Sobecki, kierownik Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB.

Wyniki otrzymane za pomocą modeli wykorzystujących sieci neuronowe były takie same lub lepsze od diagnozy postawionej przez doświadczonych radiologów. Potwierdziły to wyniki badania OPI PIB z użyciem danych historycznych od 6 radiologów oceniających 32 zmiany nowotworowe.

Jak zaznaczają specjaliści z OPI PIB, sztuczna inteligencja wykorzystująca uczenie głębokie nie zastąpi lekarzy, ale ułatwi im pracę i przyspieszy rozpoczęcie leczenia pacjenta. Wciąż jednak mało jest otwartych baz danych, które można byłoby wykorzystać do usprawnienia algorytmów sztucznej inteligencji. Należy pamiętać, że modele te są tak dobre, jak dane, na których zostały wyuczone. Chodzi zarówno o ich liczebność, jak i o jakość.


Źródło: pap.pl

Recenzje



http://laboratoria.net/aktualnosci/30497.html
Informacje dnia: Ograniczenie soli w diecie może być groźne Nie mam jeszcze wniosków na temat pochodzenia Covid-19 Najdokładniejsze systemy satelitarnego transferu czasu Ponad połowa chorych z SARS-CoV2 cierpi na długi covid Zintegrować informacje o logistyce Wystawa "Nie to niebo" Ograniczenie soli w diecie może być groźne Nie mam jeszcze wniosków na temat pochodzenia Covid-19 Najdokładniejsze systemy satelitarnego transferu czasu Ponad połowa chorych z SARS-CoV2 cierpi na długi covid Zintegrować informacje o logistyce Wystawa "Nie to niebo" Ograniczenie soli w diecie może być groźne Nie mam jeszcze wniosków na temat pochodzenia Covid-19 Najdokładniejsze systemy satelitarnego transferu czasu Ponad połowa chorych z SARS-CoV2 cierpi na długi covid Zintegrować informacje o logistyce Wystawa "Nie to niebo"

Partnerzy

GoldenLine Fundacja Kobiety Nauki Job24 Obywatele Nauki NeuroSkoki Portal MaterialyInzynierskie.pl Uni Gdansk MULTITRAIN I MULTITRAIN II Nauki przyrodnicze KOŁO INZYNIERÓW PB ICHF PAN FUNDACJA JWP NEURONAUKA Mlodym Okiem Polski Instytut Rozwoju Biznesu Analityka Nauka w Polsce CITTRU - Centrum Innowacji, Transferu Technologii i Rozwoju Uniwersytetu Akademia PAN Chemia i Biznes Farmacom Świat Chemii Forum Akademickie Biotechnologia     Bioszkolenia Geodezja Instytut Lotnictwa EuroLab

Szanowny Czytelniku!

 
25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r (RODO). Potrzebujemy Twojej zgody na przetwarzanie Twoich danych osobowych przechowywanych w plikach cookies. Poniżej znajdziesz pełny zakres informacji na ten temat.
 
Zgadzam się na przechowywanie na urządzeniu, z którego korzystam tzw. plików cookies oraz na przetwarzanie moich danych osobowych pozostawianych w czasie korzystania przeze mnie ze strony internetowej Laboratoria.net w celach marketingowych, w tym na profilowanie i w celach analitycznych.

Kto będzie administratorem Twoich danych?

Administratorami Twoich danych będziemy my: Portal Laboratoria.net z siedzibą w Krakowie (Grupa INTS ul. Czerwone Maki 55/25 30-392 Kraków).

O jakich danych mówimy?

Chodzi o dane osobowe, które są zbierane w ramach korzystania przez Ciebie z naszych usług w tym zapisywanych w plikach cookies.

Dlaczego chcemy przetwarzać Twoje dane?

Przetwarzamy te dane w celach opisanych w polityce prywatności, między innymi aby:

Komu możemy przekazać dane?

Zgodnie z obowiązującym prawem Twoje dane możemy przekazywać podmiotom przetwarzającym je na nasze zlecenie, np. agencjom marketingowym, podwykonawcom naszych usług oraz podmiotom uprawnionym do uzyskania danych na podstawie obowiązującego prawa np. sądom lub organom ścigania – oczywiście tylko gdy wystąpią z żądaniem w oparciu o stosowną podstawę prawną.

Jakie masz prawa w stosunku do Twoich danych?

Masz między innymi prawo do żądania dostępu do danych, sprostowania, usunięcia lub ograniczenia ich przetwarzania. Możesz także wycofać zgodę na przetwarzanie danych osobowych, zgłosić sprzeciw oraz skorzystać z innych praw.

Jakie są podstawy prawne przetwarzania Twoich danych?

Każde przetwarzanie Twoich danych musi być oparte na właściwej, zgodnej z obowiązującymi przepisami, podstawie prawnej. Podstawą prawną przetwarzania Twoich danych w celu świadczenia usług, w tym dopasowywania ich do Twoich zainteresowań, analizowania ich i udoskonalania oraz zapewniania ich bezpieczeństwa jest niezbędność do wykonania umów o ich świadczenie (tymi umowami są zazwyczaj regulaminy lub podobne dokumenty dostępne w usługach, z których korzystasz). Taką podstawą prawną dla pomiarów statystycznych i marketingu własnego administratorów jest tzw. uzasadniony interes administratora. Przetwarzanie Twoich danych w celach marketingowych podmiotów trzecich będzie odbywać się na podstawie Twojej dobrowolnej zgody.

Dlatego też proszę zaznacz przycisk "zgadzam się" jeżeli zgadzasz się na przetwarzanie Twoich danych osobowych zbieranych w ramach korzystania przez ze mnie z portalu *Laboratoria.net, udostępnianych zarówno w wersji "desktop", jak i "mobile", w tym także zbieranych w tzw. plikach cookies. Wyrażenie zgody jest dobrowolne i możesz ją w dowolnym momencie wycofać.
 
Więcej w naszej POLITYCE PRYWATNOŚCI
 

Newsletter

Zawsze aktualne informacje