- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Przyszłość genetyki sądowej
Genetyka sądowa jest jedną z najszybciej rozwijających się dziedzin genetyki i współczesnej kryminalistyki. Ta nowa dyscyplina naukowa, łączy metody i narzędzia badawcze genetyki, biologii molekularnej, immunologii oraz kryminalistyki. Genetyka sądowa zajmuje się określaniem pokrewieństwa pomiędzy osobami, a także identyfikacją genetyczną śladów biologicznych pozostawionych na miejscu przestępstwa. Dyscyplina ta znana jest przede wszystkim z działalności stosowanej, wykorzystującej stare, tradycyjne, jak i bardzo nowoczesne
metody badawcze do aplikacji praktycznych takich jak: identyfikacja zwłok i szczątków ludzkich, identyfikacja osób, w tym również noworodków zamienionych w szpitalu, identyfikacja zamienionych próbek materiału biologicznego, przede wszystkim krwi oraz preparatów histologicznych, ustalanie pokrewieństwa, ustalanie spornego ojcostwa oraz sporadycznie macierzyństwa, ustalanie cech przestępstwa (motywów, przebiegu, skutków) oraz badanie polimorficznych cech dziedziczonych zgodnie z płcią (mtDNA oraz cechy z chromosomu Y). Ludzkie DNA, a także technika namnażania DNA za pomocą reakcji PCR została po raz pierwszy wykorzystana do celów identyfikacyjnych 25 lat temu. Niewiarygodne jest, że we współczesnej nauce, wykorzystywane są wciąż XIX-wieczne metody badawcze na równi ze współczesnymi. Genetyka sądowa jest nauką zespołową aniżeli indywidualną [1].
W sądownictwie zastosowanie metod genetycznych pozwala na uwolnienie osoby niewinnej od podejrzeń, a skazanie osoby winnej. Dowodem w sprawie może być nawet pojedyncza genetyczna różnica pomiędzy próbkami zebranymi z miejsca przestępstwa, a próbką pochodzącą od podejrzanego. Wszystkie organizmy rozmnażające się płciowo posiadają indywidualną kombinacje sekwencji DNA oraz niepowtarzalny genotyp. Dzięki temu sekwencja DNA, pobrana z miejsca zbrodni będzie identyczna z sekwencją DNA podejrzanego. Można wówczas zdecydowanie stwierdzić, że próbka ta pochodzi od podejrzanego. Podczas porównywania sekwencji DNA z próbki tkanki pochodzącej z miejsca przestępstwa z sekwencją podejrzanego widoczne będą różnice, świadczyć to będzie o braku powiązań podejrzanego z miejscem przestępstwa. Jedynym warunkiem jest tutaj porównanie dużej ilości sekwencji. W sądownictwie mogą być także wykorzystywane białka, które można porównywać przy pomocy technik immunologicznych. Przykładem jest zastosowanie przeciwciał do określenia grupy krwi czy rodzaju tkanki, a także użycie metod elektroforetycznych, które określają różnice w stosunku ładunek do masy [1].
Do potwierdzenia bądź zaprzeczenia pokrewieństwa może być wykorzystywane genetyczne podobieństwo między rodzicami a potomstwem. Testy genetyczne stosuje się zwykle w sprawach o ustalenie ojcostwa oraz wówczas gdy trzeba ustalić tożsamość dzieci zamienionych czy porwanych. Testy genetyczne są stosowane także w odniesieniu do zwierząt ponieważ do skazania morderców doprowadziły badania metodą genetycznego "odcisku palca" przeprowadzone na materiale biologicznym, który nie pochodził od człowieka. Metoda ta pomogła stwierdzić, że sierść kota znajdująca się na miejscu przestępstwa była identyczna z sierścią kota podejrzanego. Innym przykładem może być nasienie znalezione w samochodzie podejrzanego, które pochodziło z drzewa, przy którym znajdowało się ciało ofiary. Ogólnie można podsumować, że głównym celem genetyki sądowej jest przystosowanie wiedzy i umiejętności medycznych do potrzeb sądów, a rolą jest połączenie medycyny z prawem [1].
Historia genetyki sądowej
Po raz pierwszy przypadek praktycznego wykorzystania śladu krwi, niewidocznego gołym okiem, został opisany w XIII wieku, w chińskim manuskrypcie Hsi Yuan chi Lu. Nie mogąc w żaden sposób ustalić sprawcy, śledczy nakazał zebranie od podejrzanych rolników ich sierpów i postawił zarzut zabójstwa właścicielowi narzędzia, którym interesowały się muchy. W obecnych czasach eksperymenty polegające na wykładaniu nowych i użytych chociaż umytych przez rzeźników narzędzi, wykazały większą „aktywność" owadów wokół narzędzi użytych do rzezi zwierząt, w porównaniu do takich samych, nowych narzędzi. Pięcioksiąg poświęcony wiedzy sądowo-lekarskiej Hsi Yuan Lu, zawierał informacje o badaniu zmarłych, rodzajach ran w zależności od użytej broni, a także różnicach objawów w przypadku utopienia i uduszenia [1].
Kolejnym odkrywcą nowego etapu badań w rozwoju genetyki sądowej jest Ludwik Teichmann, anatomopatolog z Krakowa, który w 1853 roku opracował metodę otrzymywania mikrokryształów heminy jako niezawodnego sposobu odróżniania krwi od innych kolorowych cieczy. Od tego momentu stała się możliwa jednoznaczna ocena plam pozostawionych na miejscu przestępstwa, jako pochodzących od człowieka, bądź będących skutkiem działania innych substancji. Badania Teichmanna, dały początek wszystkim późniejszym badaniom chemicznym nad hemoglobiną. Odróżnienie krwi ludzkiej od zwierzęcej stało się możliwe w 1901 roku, kiedy Ulenhuth zastosował w tym celu zjawisko immunoprecypitacji. Polegało ono na tworzeniu nierozpuszczalnych precypitatów białek ludzkich bądź zwierzęcych pod wpływem gatunkowo specyficznych surowic odpornościowych. Po wprowadzeniu techniki Ulenhutha, kryminalistycy wiedzieli już, że badana plama krwi na pewno pochodzi od człowieka, a nie od zwierzęcia, ale wciąż nie można było zidentyfikować konkretnej osoby. Ten problem rozwiązano w 1903 roku po ukazaniu się pracy Landsteinera i Richtera, która dotyczyła indywidualizacji krwi ludzkiej. Od tego czasu główny nurt badań śladów krwi nazywano kolejno serologią, serologią grup krwi, serohematologią, serohematologią sądową, hemogenetyką, a w ostatnich czasach, genetyką sądową [2].
Na przełomie lat dwudziestych i trzydziestych ubiegłego wieku Lattes i Holzer, wprowadzili do dzisiaj stosowane, czułe i nie budzące wątpliwości techniki oznaczania antygenów AiBzukładu grupowego ABO. Dekadę później zostały one uzupełnione przez Popielskiego o oznaczanie antygenu grupowego H, typowego szczególnie dla grupy krwi 0. Następni badacze, w kolejnych dekadach do praktyki wprowadzili nowe cechy grupowe z zakresu antygenów erytrocytarnych, białek surowicy oraz najistotniejszych polimorficznych enzymów krwinkowych. Przyczyniło się to do takiego stanu, że w połowie lat osiemdziesiątych wybitne laboratoria kryminalistyczne potrafiły oznaczyć około dwie dziesiątki markerów, uzyskując siłę dyskryminacji około 0,01. Oznaczało to, że trzeba było średnio zbadać 100 przypadkowych plam krwi, aby znaleźć tą samą pod względem badanych cech grupowych [3].
Dalszy postęp nastąpił w roku 1984, gdy zespół brytyjskich genetyków z uniwersytetu w Leicester, kierowany przez Aleca Jeffreysa, po raz pierwszy w praktyce zastosował badanie polimorfizmu DNA. Testy dotyczyły nie tylko krwi, ale także sprawdzały się przy badaniu próbek śliny, spermy czy też włosów. Naukowcy ci zastosowali technikę RFLP (Restriction Fragments Lenght Polymorphism), która połączyła w całość wcześniej znane i ogólnie stosowane metody molekularne, takie jak: makroizolacja DNA, elektroforeza agarozowa, trawienie DNA enzymami restrykcyjnymi, transfer rozdzielonych elektroforetycznie fragmentów DNA na folię nylonową oraz hybrydyzacja rozdzielonych fragmentów z odpowiednimi sondami molekularnymi. W wyniku badań DNA techniką Jeffrerysa powstają prążki, przypominające używane w handlu kody kreskowe, gdzie każdy człowiek może tak przedstawione wyniki odczytać i samodzielnie wyjaśnić doszukując się podobieństwa pomiędzy kreseczkami kodu (Rys.1) [4].
Rys.1. Badanie DNA wykonane techniką RFLP.
Jednak nowe metody identyfikacji nie były pozbawione wad. Z jednej strony ukazał się nowy cel genetyki sądowej, identyfikacja indywidualna człowieka bądź pochodzącego od niego materiału biologicznego, natomiast z drugiej strony nie było akceptowalnej drogi do jego osiągnięcia. Problem stanowiła dość duża ilość materiału biologicznego (w praktyce musiała to być silnie wysycona plama krwi), a także DNA, który musiał być niezdegradowany, co było bardzo trudne w praktyce kryminalistycznej. Nie przeszkodziło to jednak w powstaniu pierwszej biokartoteki, czyli „banku danych (profili) DNA". Od połowy lat dziewięćdziesiątych do chwili obecnej biokartoteka jest ciągle udoskonalana, dzięki niej w wielu krajach osiągnięto wiele sukcesów w rozwiązywaniu zawiłych zagadek kryminalistycznych. W początkowej fazie biokartoteka opierała się przede wszystkim na testach hybrydyzacyjnych, które były wykonywane przy użyciu czterech prób molekularnych typu single locus probes. Następstwa kolejnych wydarzeń wykazały, że utworzenie tej bazy danych było zbyt wczesne ponieważ aby uzyskać wyniki przydatne do wprowadzenia do bazy, trzeba było mieć dostęp do dość dużych ilości świeżego dowodowego materiału biologicznego. Nie zawsze były takie możliwości, tak więc liczba profili w bazie przyrastała w niewystarczającym tempie [5]. Przeszkodę tę udało się pokonać dzięki użyciu techniki PCR (Polymerase Chain Reaction), wykrytej przez Mullisa i pierwszy raz opublikowanej w pracy Saiki i współpracowników. W języku polskim stosowany jest termin łańcuchowa reakcja polimerazy[6]. Technika ta polega na zwielokrotnieniu wybranego fragmentu DNA. Jej zaletą jest umożliwienie badania nawet minimalnej ilości materiału biologicznego, a wadą jest podatność na zanieczyszczenia jak i różnego typu błędy laboratoryjne. Wprowadzone polimorficzne układy DNA, nazywane są układami AMPFLP (Amplification Fragments Lenght Polymorphism), na przykład COL1A i D1S80. Pomimo, że do oznaczania tych układów potrzebna była minimalna ilość materiału, wciąż były one czułe na degradację DNA, spotykaną dość często w materiale dowodowym. Po części to ograniczenie znosił ogólnie stosowany w swoim czasie test PCR typu ASO (Allele Specific Oligonucleotide) typu reverse dot blot. Polegał on na ujawnianiu produktów reakcji PCR w postaci kropek na paskach folii nylonowej. Test nosił nazwę „POLYMARKER & DQA1". Technika PCR w obu odmianach AMPFLP i ASO, dała możliwości uzyskania wyników badania DNA w czasie od kilkudziesięciu minut do kilku godzin, co było zależne od jakości wyposażenia laboratoryjnego. Zastosowanie PCR sprawdziło się w kryminalistyce w identyfikacji osób zaginionych, czy ustalaniu ojcostwa. Od 1990 roku, cały świat przyjął Test POLYMARKER. Równocześnie dobierano, sprawdzano oraz uzgadniano zestaw tzw. mikrosatelitarnych STR (Short Tandem Repeat), to znaczy stosunkowo krótkich, do około 350 bp fragmentów DNA. Zdecydowanie łatwiej zachowujących się w materiale biologicznym zabezpieczonym na miejscu zdarzenia kryminalnego. Od 1997 roku te wyselekcjonowane STR są przyjmowane przez kolejne kraje, aktualnie są wdrażane przez polską policję [5].
Istnieje możliwość zastąpienia STR nowym zestawem odpowiednio dobranych polimorfizmów DNA typu SNP (Single Nucleotide Polymophisms), które dotyczą jednonukleotydowych mutacji w ludzkim DNA. Obecnie prowadzone są dyskusje kiedy, które i przy użyciu jakich technik oznaczania można będzie wdrożyć tą nową metodę. Oczekuje się, na całkowitą unifikację rozmaitych badań identyfikacyjnych, z różnych dziedzin, takich jak: identyfikacja krewnych do celów imigracyjnych (łączenie rodzin), identyfikacja personalna, ustalanie ojcostwa, kryminalistyka, seroantropologia itp. Zastosowanie układów typu SNP zdecydowanie uprości obliczenia statystyczne, gdyż w odróżnieniu od układów typu STR, w SNP nie stanowią problemu takie utrudnienia jak: populacje lokalne składające się ze spokrewnionych osób, przestępcze grupy rodzinne, nieme geny, sporadycznie spotykane allele, interallele, itp. SNP przewyższa inne typy polimorfizmów ze względu na możliwość wykazania podstruktur populacyjnych zarówno w badaniach sądowych jak i genealogicznych. Niestety koszty tego typu badań na podniesionym poziomie rozdzielczości na przykład DNA-chip, czy mikromacierze SNP są wciąż wysokie, co ogranicza ich powszechne użycie. Oczekuje się, że badania SNP powinny być tańsze, a czas oczekiwania na wyniki krótszy [7].
Najważniejszym etapem w rozwoju technik ustalenia spornego ojcostwa była wprowadzona przez Aleca Jeffreysa w 1985 roku technika RFLP (hybrydyzacyjna) do genetyki sądowej. Po raz pierwszy zastosowano wówczas technologię DNA. W 1990 roku V. Schneider i współpracownicy ustalili ojcostwo techniką RFLP tuż po urodzeniu się dziecka. Do tego czasu nie badano dzieci w wieku poniżej 6 miesięcy. W tym samym roku A. Lobbiani i współpracownicy ustalili ojcostwo techniką RFLP z wód płodowych, zanim dziecko przyszło na świat. Następnie w 1992 roku na potrzeby genetyki sądowej A. Edwards i współpracownicy, zbadali, opisali oraz zwalidowali pięć pierwszych układów mikrosatelitarnych [4]. Obecnie najczęściej stosowaną techniką w badaniach ojcostwa jest multipleksowa technika PCR. Obejmuje ona jednoczesną analizę kilku do kilkunastu loci sekwencji mikrosatelitarnych, zazwyczaj 15-16 układów STR o długości od 100 do 400 par zasad. Metoda ta polega na jednoczesnym powielaniu polimorficznych fragmentów w jednej probówce PCR, rozdzieleniu ich na sekwenatorze z drabiną alleli, a także porównaniu biostatystycznym uzyskanych wyników analizy wielopunktowej (MLP). Ustalanie wielkości fragmentów oraz numeryczne oznaczenie alleli poszczególnych układów STR wymaga użycia drabiny alleli, to znaczy wzorca z wszystkimi występującymi w populacji wariantami alleli, równocześnie rozdzielanymi z próbkami badanego ojcostwa. Wyniki tych badań dają gwarancję wykluczenia ojcostwa ze 100% pewnością bądź potwierdzenie ojcostwa z co najmniej 99,999% pewnością. Zazwyczaj proces technologiczny obejmuje: pobranie materiału genetycznego, izolację i oczyszczanie DNA, powielanie układów STR na matrycy wyizolowanego DNA, rozdział wyznakowanych fluorescencyjnie fragmentów DNA na sekwenatorze, analizę porównawczą uzyskanych profili DNA, analizę statystyczną oraz wydanie ekspertyzy [8].
Materiał biologiczny potrzebny do wykonania badań
Wraz z rozwojem technik badawczych, ilość materiału biologicznego niezbędnego do wykonania badania dowodu rzeczowego cały czas ulegała zmniejszeniu.W momencie wprowadzania w połowie lat 80-tych badań polimorfizmu DNA do praktyki genetyki sądowej, do badań używano ogromnego śladu krwi (powstałego wskutek wynaczynienia i wyschnięcia kilku mililitrów krwi). W późniejszym czasie, po zastosowaniu w praktyce układów typu AMPFLP, oznaczanych za pomocą reakcji PCR, granicą czułości była ilość materiału biologicznego. Stanowił ją depozyt tkanek napastnika, znajdujących się za paznokciami broniącej się ofiary. Aktualnie, w przypadku użycia multipleksowej reakcji PCR granicą jest ilość materiału znajdującego się w krwawym odcisku palca. Istnieją też przypadki, że depozyt biologiczny pobierany jest z komórek naskórka napastnika obecnego na sznurku, którym krępowano ofiarę, a nawet z tkanek ofiary postrzału zapieczonych na pocisku, który przeszył jej ciało. Multipleksowa reakcja PCR polega na wykonaniu kilkunastu różnych reakcji PCR w tej samej probówce reakcyjnej z wieloma parami starterów jednocześnie [5].
Cechy dziedziczące się „po kądzieli" i „po mieczu"
W cechach dziedziczących się „po kądzieli" i „po mieczu" całość materiału genetycznego pochodzi od matki bądź od ojca. Cechy tego typu są takie same jak rodzicielskie, ich badanie identyfikuje głównie rodzinę, w rozumieniu wszystkich potomków wspólnego żeńskiego przodka, bądź ród, w rozumieniu wszystkich potomków wspólnego męskiego przodka [9].
Obecnie eksperci pracujący w Laboratoriach Medycyny Sądowej wykorzystują metody badań oparte na najnowszych technologiach. Należy do nich analiza mitochondrialnego DNA (mtDNA), uzupełniająca badania mniej trwałego, genomowego DNA (gDNA). Całość informacji o ludzkim organizmie jest kodowana przez te dwa rodzaje DNA z tym, że gDNA jest przechowywany w formie chromosomów w jądrze komórkowym i jest dziedziczony w połowie od ojca i matki. Natomiast mtDNA, przechowywane w licznych mitochondriach komórki, charakteryzuje się kilkoma wyjątkowymi cechami, odróżniającymi je od pozostałej informacji genetycznej, gdyż jest ono przekazywane z pokolenia na pokolenie w specyficzny sposób. Jest ono zawsze dziedziczone po matce „po kądzieli" (Rys.2). Dzięki temu, że mitochondrialne DNA jest odporne na wiele czynników środowiskowych, które niszczą gDNA i występuje w komórce w setkach tysięcy kopi, istnieje możliwość przeprowadzenia badania identyfikacyjnego wtedy, gdy standardowe procedury analizy polimorfizmu loci STR zawodzą. Metoda analizy polimorfizmu mitochondrialnego DNA jest jedyną, którą można użyć w sytuacji badań włosów pozbawionych cebulek, a także innych śladów biologicznych występujących w małej ilości bądź zdegradowanych. Świadczy to o ogromnej czułości metod analizy mt-DNA. Cechą mitochondrialnego DNA jest także, że jego pewna część charakteryzuje się zmiennością międzyosobniczą, to znaczy polimorfizmem przez co stanowi istotne narzędzie w identyfikacji materiału biologicznego, posiadającego małe ilości DNA. Do tego typu śladów zalicza się włosy, stare kości, jak i minimalne drobiny materiału biologicznego.Duża liczba cząsteczek mtDNA, przypadająca na pojedynczą komórkę, umożliwia przeprowadzenie analizy porównawczej próbek nawet bardzo rozłożonych fragmentów zwłok. Przyczynia się także do ustalenia pokrewieństwa w linii matka-potomstwo oraz określenia pokrewieństwa pomiędzy rodzeństwem. Zastosowanie analizy mtDNA w badaniach kryminalistycznych posiada ogromny potencjał w przeprowadzanych procesach śledczych, gdyż może być wykorzystywane we współcześnie ujawnionych przestępstwach, jak i w sprawach z przed wielu lat między innymi identyfikacji osób zaginionych [9].
Wieloletnie doświadczenie pozwoliło na opracowanie nowej, skuteczniejszej metody badań mtDNA - testu umożliwiającego identyfikację najbardziej różnicujących na mtDNA miejsc SNP (ang. Single Nucleotide Polymorphism). Metoda ta polega na rozdziale fluorescencyjnych fragmentów DNA (moduł: mtDNAtest-SNP). Zastosowanie modułu SNP zestawu mtDNAtest umożliwia uzyskanie wstępnych oraz wiarygodnych wyników z wielu prób. Wstępne wytypowanie ważnych z punktu widzenia dowodowego i procesowego prób ogranicza ich liczbę, dzięki czemu biegli mogą się skupić wyłącznie na ważnych próbach. Zdecydowanie skraca to czas badań i obniża koszt wykonywanych w dalszej kolejności analiz sekwencyjnych całego obszaru bardzo zmiennych rejonów HVI oraz HVII (moduł: mtDNAtest-SEK). Odpowiednio dobrany zestaw analizowanych SNP daje możliwość badania najbardziej różnicujących miejsc hiperzmiennych sekwencji HVI I HVII, dlatego ma zastosowanie w identyfikacji genetycznej i porównawczej analizie mtDNA próbek śladów biologicznych [9].
Oprócz badań mitochondrialnych zaczęto także badać polimorfizmy DNA z chromosomu Y, które decydują o płci męskiej i są przekazywane z mężczyzny na mężczyznę, czyli dziedziczone „po mieczu". Polimorficzne markery chromosomu Y są wykorzystywane w ustalaniu pokrewieństwa w linii męskiej, umożliwiającego na przykład ustalenie korzeni nazwiska, a także w sprawach identyfikacyjnych. Szczególnie dotyczyć to będzie konieczności wyodrębnienia materiału genetycznego mężczyzny lub kilku mężczyzn w przestępstwach seksualnych. Wynikiem badania jest profil genetyczny chromosomu Y, który jest przedstawiony w formie zestawu numerycznie oznaczonych alleli układów STR chromosomu Y. Następnie jako liczbowy zestaw danych jest on wprowadzany do bioinformatycznych baz danych posiadających tysiące profili genetycznych chromosomu Y wcześniej przebadanych osób. Celem takiej analizy jest porównanie profilu badanej osoby z profilami osób nie tylko w Polsce, ale i na całym świecie, a zarazem określenie jej pochodzenia w linii męskiej [9].
Rys.2. Dziedziczenie mitochondrialnego DNA (mtDNA).
Podsumowanie
Wraz z rozwojem molekularnych metod identyfikacyjnych, coraz częściej podejmuje się próbę zwrócenia tożsamości nie tylko ofiarom różnego rodzaju przestępstw kryminalnych, ale również ofiarom konfliktów zbrojnych i systemów totalitarnych.
Przypuszcza się, że dalszy postęp genetyki sądowej będzie polegał na miniaturyzacji oraz automatyzacji procedury badawczej, przyśpieszaniu czasu wykonania analizy, jak i zmniejszaniu jej kosztów. Prawdopodobnie identyfikacja biologiczna znajdzie powszechne zastosowanie jako „indywidualny kod dostępu" do bankomatów, wszelkiego typu konsolet sterowniczych, do drzwi wejściowych i temu podobnych. Przywołując twierdzenie popularnego francuskiego kryminologa Locarda, że ‘’… wszystko zostawia jakiś ślad…”, to dzięki sukcesom genetyki, głównie w przypadku śladów biologicznych istnieją ogromne możliwości identyfikacyjne. Postęp w tej dziedzinie nauki w efekcie przyczyni się do pokaźnego zmniejszenia przestępczości, umożliwi rozprawienie się z narastającym terroryzmem, a także wpłynie na ułatwienie lepszego i bezpieczniejszego życia ludzkości.
Autor: Katarzyna Czuba
Literatura:
- Benecke M. A brief history of forensic entomology. For. Sci. Int. 2001. 120, 2-14.
- Swiątek B. Modyfikacja własna metody ,,mieszanej aglutynacji" w badaniach identyfikacyjnych śladów krwawych, rozprawa habilitacyjna. AM Wrocław. 1989.
- Popielski B. Stwierdzenie przynależności grupowej śladów krwawych, pochodzących z grupy 0 i A2. Polska Gazeta Lekarska. 1939. 18,100-101.
- Jeffreys A., Wilson U., Tein S. Hypervariable „minisatellite" regions in human DNA. Nature. 1985. 314, 67.
- Butler J. Forensic DNA typing. Academic Press. Elsevier. San Diego 2003.
- Saiki R., Scharf S., Faloona F., Mullis K., Horn R., Erlich H., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985. 230, 1350-1354.
- Ellonen P., Levander M., Ulmanen I., Lukka M. Development of SNP microarray for suplementary paternity testing.Progress in Forensic Genetics 10. Elsevier International Congress Series. 2004. 1261,12-14.
- Dobosz T., Sąsiadek M., Kowalczyk E., Swiątek B., Jagielski J. Prenatalne badanie w sprawie spornego ojcostwa. Opis przypadku. Arch. Med. Sąd. Krym. 2000. 50, 137-140.
- Gill P., Ivanov P. L., Kimpton C., Piercy R., Benson N., Tully G., Evett J., Hagelberg E., Sullivan K. Identification of the remains of the Romanov family by DNA analysis. Nat. Genet. 1994. 6, 130-135.
- http://monash.edu/science/about/schools/biological-sciences/units/gen3051.html
Tagi: genetyka sądowa, kryminalistyka, materiał biologiczny, mtDNA, cechy z chromosomu Y
wstecz Podziel się ze znajomymi
Recenzje