- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Nieśmiertelność jako jedna z ważniejszych cech komórek nowotworowych
Wewnętrzny zegar zdrowej komórki, który mówi jej, że jest już stara i powinna przestać się dzielić, to telomery - fragmenty DNA na końcu chromosomów. Składają się one z tysięcy powtórzeń krótkiej sekwencji DNA. Przy każdym podwajaniu chromosomów podczas podziału komórki telomery ulegają skróceniu ze względu na ograniczenia mechanizmu replikacji DNA. Kiedy telomery odpowiednio mocno się skrócą, komórka przestaje się dzielić, zmienia się jej metabolizm, aż w końcu popełnia samobójstwo.
Jednak komórka zbliżająca się do limitu podziałów może na jakiś czas uniknąć wejścia w proces starzenia na skutek inaktywacji białek supresorowych takich, jak p53 czy RB1. Wtedy po kolejnych podziałach następuje następny kryzys – kryzys telomerowy. Kiedy telomery są już naprawdę bardzo krótkie, z genomu komórki robi się straszny bałagan – delecje, amplifikacje i rearanżacja wielu chromosomów. Końcówki chromosomów pozbawione telomerów mogą być na przykład sklejane ze sobą, gdyż są interpretowane przez mechanizmy naprawy DNA jako pęknięcia. Większość komórek w wyniku tego bałaganu umiera. Uciec przed tym drugim kryzysem – i zyskać nieśmiertelność – mogą tylko te komórki, które aktywują telomerazę (enzym wydłużający telomery, aktywny w zdrowych komórkach głównie podczas rozwoju płodowego) albo znajdą alternatywny mechanizm ich wydłużania (ALT), który prawdopodobnie wykorzystuje rekombinację. Podejrzewa się również, że czasem bałagan chromosomalny przed włączeniem się mechanizmu wydłużania telomerów może ułatwić powstawanie nowych mutacji wspomagających przekształcanie się w komórkę nowotworową.
Kiedy to następuje? Badania nad rakiem jelita grubego wykazały, że telomery są znacząco krótsze w komórkach nowotworowych, niż w zdrowych komórkach pochodzących od tych samych pacjentów, jednak stadium nowotworu nie wpływa na długość telomerów. Za to aktywność telomerazy wzrasta – im późniejsze stadium, tym jest wyższa. W raku płuc w zmianach złośliwiejących – czyli przedrakowych – zaobserwowano krótkie telomery, które stają się coraz dłuższe w kolejnych stadiach rozwoju nowotworu. W raku piersi jest podobnie, zaczyna się od skrócenia telomerów, ale w późniejszych stadiach znów są długie, a aktywność telomerazy wzrasta.
Zajmujący się czerniakiem zespół naukowców pod wodzą Dorothy Bennett postanowił sprawdzić, kiedy dokładnie komórki tego nowotworu uzyskują nieśmiertelność. Dotychczasowe badania dowiodły, że w przerzutującym czerniaku aktywność telomerazy jest wysoka, jednak nie było zgody co do tego, jak wygląda we wcześniejszych stadiach, ani pewności, który krok na drodze do nieśmiertelności zachodzi na którym etapie rozwoju raka.
Większość nieśmiertelnych linii komórkowych hodowanych w laboratoriach pochodzi z zaawansowanych nowotworów, w tym z przerzutującego czerniaka. Badacze spróbowali więc wyprowadzić hodowle linii komórkowych z pierwotnych zmian skórnych na różnych etapach zaawansowania i zobaczyć, jak długo będą się dzielić. Prace zajęły im cztery lata, włącznie z ustalaniem takich warunków hodowli, żeby przynajmniej na początku wszystkie komórki były w dobrej formie.
Komórki pochodzące ze znamion łagodnych oraz dysplastycznych (przednowotworowych) przypominały zdrowe melanocyty w fazie starzenia się komórkowego. Wśród tych pochodzących z czerniaków mniej komórek wyglądało na starzejące się. Żadna z hodowli wywodzących się ze zmian łagodnych (22 hodowle) i dysplastycznych (6 hodowli) nie przetrwała więcej, niż pół roku – albo od początku prawie nie rosły albo przestawały się dzielić po kilku-kilkunastu tygodniach.
Poza tym badacze porównali komórki pierwotnego, nieprzerzutującego czerniaka z dwóch faz wzrostu. Pierwsza, wcześniejsza, to faza wzrostu powierzchniowego (RGP), kiedy guz rozrasta się horyzontalnie w naskórku, niemal nie wnikając w głąb, i bardzo rzadko ma zdolnośc do tworenia przerzutów. Druga faza wzrostu czerniaka to faza wzrostu pionowego (VGP), kiedy nowotwór zaczyna rozrastać się w głębsze warstwy skóry. I choć te hodowle radziły sobie lepiej, jedynie 3 z 25 hodowli czerniaka z fazy RGP i 1 z 15 hodowli VGP okazały się być nieśmiertelne (tzn. udało się je utrzymać w hodowli do teraz, i trwa to już ponad rok). Przy okazji badacze potwierdzili, że hodowle RGP potrzebują do wzrostu obecności keranocytów, a VGP już nie.
Wszystkie hodowle, które w pewnym momencie przestały rosnąć, zawierały komórki mające cechy charakterystyczne dla etapu starzenia się komórkowego. Takich komórek nie było w żadnej nieśmiertelnej hodowli. Zatrzymane hodowle czerniaka VGP wykazywały ponadto oznaki mogące sugerować, że są w stanie kryzysu telomerowego. Również komórki pobrane prosto z czerniaka w tym stadium, bez hodowli, często charakteryzowały się dysfunkcją telomerów i innymi cechami typowymi dla kryzysu telomerowego np. mostkami anafazowymi. Wydaje się zatem, że faza kryzysu telomerowego następuje nie na początku transformacji nowotworowej, ale w jej trakcie – dla czerniaka byłaby to faza VGP.
W czterech nowych nieśmiertelnych liniach zaobserwowano też aktywność telomerazy porównywalną z komórkami przerzutującego czerniaka, natomiast w żadnej linii, która przestała rosnąć, nie stwierdzono aktywności tego enzymu.
Tak więc możliwe jest, że w czerniaku komórki uzyskują nieśmiertelność stosunkowo późno, a wczesne stadia czerniaka to najczęściej komórki w fazie przed lub w trakcie kryzysu telomerowego. Zatem nieśmiertelność jest jedną z ostatnich cech, jakiej nabywają zdrowe komórki w procesie przekształcania się w komórki nowotworowe.
Opracowała: Katarzyna Sowa-Lewandowska
Literatura:
1. Soo JK, Mackenzie Ross AD, Kallenberg DM, Milagre C, Heung Chong W, Chow J, Hill L, Hoare S, Collinson RS, Hossain M, Keith WN, Marais R, & Bennett DC (2011). Malignancy without immortality? Cellular immortalization as a possible late event in melanoma progression. Pigment cell & melanoma research PMID: 21418545
2. Lantuejoul S, Raynaud C, Salameire D, Gazzeri S, Moro-Sibilot D, Soria JC, Brambilla C, & Brambilla E. (2010) Telomere maintenance and DNA damage responses during lung carcinogenesis. Clinical cancer research : an official journal of the American Association for Cancer Research, 16(11), 2979-88. PMID: 20404006
3. Raynaud, CM et al. (2010) DNA Damage Repair and Telomere Length in Normal Breast, Preneoplastic Lesions, and Invasive Cancer. American Journal of Clinical Oncology, 1785(4), 156-345. DOI: 10.1097/COC.0b013e3181b0c4c2
4. Rampazzo, E., Bertorelle, R., Serra, L., Terrin, L., Candiotto, C., Pucciarelli, S., Bianco, P., Nitti, D., & De Rossi, A. (2010) Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. British Journal of Cancer, 102(8), 1300-1305. DOI: 10.1038/sj.bjc.6605644
5. Hanahan D, & Weinberg RA. (2011) Hallmarks of cancer: the next generation. Cell, 144(5), 646-74. PMID: 21376230
6. Artandi SE, & DePinho RA. (2010) Telomeres and telomerase in cancer. Carcinogenesis, 31(1), 9-18. PMID: 19887512
Recenzje