- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Czujniki światłowodowe jako detektory pola akustycznego
Podstawowym zastosowaniem światłowodów we współczesnej technice są systemy transmisji danych w telekomunikacji oraz sieciach komputerowych. Przewaga światłowodowego toru transmisji nad torem elektrycznym to przede wszystkim olbrzymia szybkość przesyłania danych, która sięga na obecnym etapie rozwoju techniki kilkunastu Tbit/s. Częstotliwość nośna fali świetlnej jest rzędu 200 – 300 THz, a więc fizyczne granice szybkości transmisji są jeszcze dalekie. Dla porównania, w systemach transmisji elektrycznej osiąga się szybkości rzędu zaledwie kilku Gb/s. Światłowody wyparły przewody miedziane praktycznie we wszystkich systemach telekomunikacyjnych pracujących. Znajdują również coraz szersze zastosowanie jako czujniki rozmaitych własności fizykochemicznych.
Do detekcji pola akustycznego za pomocą czujników światłowodowych wykorzystuje się światłowody wielo- i jednomodowe. Różnica polega na możliwości przesyłania jednego bądź większej liczby modów światła w tym samym czasie.
Większość układów detekcji opiera się na światłowodach wielomodowych i wykorzystuje efekt sprężystego odkształcenia światłowodu wywołanego oddziaływaniem zmiennego pola akustycznego przenikającego światłowód.
Składowa poprzeczna pola elektrycznego m-tego modu fali optycznej wychodząca ze światłowodu poddanego działaniu zewnętrznego ciśnienia akustycznego ma następującą postać:
Am (ρ,Θ,t) = Am (ρ,Θ) exp [ i * ( βm*l – ω*t + Φm + Φm*sin Ωst )]
gdzie:
βm - stała propagacji m-tego modu,
Φm - faza początkowa m-tego modu,
l - długość włókna poddanego ciśnieniu akustycznemu,
Φm*sin Ωst - indukowane przesunięcie fazy fali świetlnej wywołane zewnętrznym polem akustycznym poprzez:
- zmiany współczynnika załamania rdzenia (efekt elastooptyczny),
- zmiany długości rdzenia światłowodu pod wpływem naprężeń,
- zmiany średnicy rdzenia.
Zatem zaburzenia struktury fazowej światłowodu wielomodowego powoduje sprzężenie modów kierowanych i radiacyjnych, co w efekcie daje wypromieniowanie części energii prowadzonej z rdzenia światłowodu. Występujący ubytek energii jest proporcjonalny do amplitudy pola akustycznego.
Opis czujnika
W celu wzbudzenia światłowodu zastosowanego w czujniku najczęściej używany jest laser He-Ne. Natomiast źródłem ciśnienia akustycznego powinien być emiter fal radiowych np. głośnik radiowy.
Światłowód zwija się w ciasną spiralę i umieszcza na płaskim nośniku z tworzywa sztucznego lub nawija na walec polistyrenowy (dwie różne konfiguracje) (Rys. 1-2).
W związku z tym wykorzystuje się do detekcji pola akustycznego zjawisko lokalnej interferencji ustawiając detektor na jeden wybrany obszar świecenia pola światłowodu. Czujnik wiernie odbiera sinusoidalne pole ciśnienia akustycznego przenikającego światłowód.
Rysunek 1. Światłowód zwinięty w spiralę, umieszczony na płytce z tworzywa sztucznego: 1- głośnik; 2 – obiektyw mikroskopu; 3- płytka; 4 - światłowód; 5 - fototranzystor; 6 – mikrowoltomierz; 7 – oscyloskop; 8- fala akustyczna.
Rysunek 2. Światłowód nawinięty na wydrążonym walcu. Od lewej laser He-Ne, 1 – głośnik, 2 - obiektyw mikroskopu, 3 - światłfotodioda, 4 - wzmacniacz, 5 – oscyloskop; 6 – woltomierz; 7 – fala akustyczna.
Rysunek 3. Układ detekcyjny. Fotodetektor ustawiono w polu świecenia wyjścia światłowód.
Przy wzbudzeniu odcinka światłowodu laserem, ilość wzbudzonych modów jest niewielka, a struktura ziarnista ma wyraźne obszary lokalnej interferencji kilku modów, charakteryzujące się silnym świeceniem.
Podczas detekcji pola takich obszarów stwierdza się, że wielkość natężenia światła jest silnie zależna od oddziaływania otoczenia na światłowód tj. zgięcia, temperatura i drgania.
Rysunek 4. Liniowa charakterystyka światłowodowego czujnika względem zewnętrznego ciśnienia. Paraboliczny kształt odpowiada kwadratowej zależności mocy akustycznej od napięcia podawanego na głośnik. Gdzie: • detektor światłowodowy; X detektor piezoelektryczny
Rysunek 5.Liniowa charakterystyka światłowodowego czujnika względem zewnętrznego ciśnienia. Linia prosta jest częścią paraboli mocy akustycznej. Wykres wskazuje na większą czułość czujnika światłowodowego w porównaniu z piezoelektrycznym. Gdzie: • detektor światłowodowy; * detektor piezoelektryczny
Wniosek
Do konstruowania czujników światłowodowych należy stosować światłowody wielomodowe, w których propaguje się skończoną ilość modów oraz przenoszony jest stan polaryzacji fali świetlnej na odległość kilkuset metrów.
Podsumowanie
Czujnik optyczny jest elementem optoelektronicznym. Zasada działania polega na wysyłaniu wiązki promieni świetlnych przez nadajnik oraz na odbieraniu jej przez odbiornik. Czujnik ten reaguje na obiekty przecinające wiązkę światła pomiędzy nadajnikiem a odbiornikiem lub na wiązkę odbitą od obiektu. Czujniki optyczne charakteryzują się dużymi strefami wykrywania obiektów. Powyżej przedstawiony układ z powodzeniem może zostać zastosowany do detekcji zmian pola akustycznego chociażby w przemyśle, gdzie produkcja odbywa się w akustycznie izolowanych pomieszczeniach.
Autor: Karolina Wójciuk
Literatura
1. Z. Brzózka, W. Wróblewski, 1999. Sensory chemiczne. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa
2. M. Szustakowski, 1992. Elementy techniki światłowodowej, WNT, Warszawa
3. J. Siuzdak, 1999. Wstęp do współczesnej telekomunikacji światłowodowej, WKŁ, Warszawa
Recenzje