Odkrywając tajemnice ekspresji genów
Wykorzystując mikroskop krioelektronowy (cryo-EM), Eva Nogales z Lawrence Berkeley National Laboratory (Berkeley Lab) i jej zespół badawczy dokonali znaczącego przełomu w naszym rozumieniu tego, jak molekularna maszyneria odnajduje odpowiednie DNA do skopiowania, pokazując z bezprecedensową precyzją rolę podstawowego czynnika transkrypcyjnego, czyli tzw. TFIID.
To odkrycie jest istotne, ponieważ toruje drogę naukowcom pragnącym zrozumieć i eliminować nieprawidłowości. „Zrozumienie tego procesu w komórce jest jedynym sposobem na manipulowanie nim i naprawianie go kiedy idzie nie tak”, mówi Nogales. „Ekspresja genów leży w centrum wielu kluczowych procesów biologicznych, od rozwoju embrionu do powstawania nowotworów. Pewnego dnia będziemy w stanie manipulować tymi fundamentalnymi mechanizmami, w celu korekcji ekspresji genów, które powinny lub nie powinny się znaleźć lub w celu zadbania o stan, w którym proces wymknął się spod kontroli”.
Model Cryo-EM kompleksu preinicjacyjnego ludzkiej transkrypcji. (Obraz: Robert Louder/Berkeley Lab)
Ich wyniki zostały opublikowane online w czasopismie Nature. ("Structure of promoter-bound TFIID and model of human pre-initiation complex assembly"). Głównym autorem jest Robert Louder, absolwent biofizyki w laboratorium Nogales, innymi autorami są Yuan He, José Ramón López-Blanco, Jie Fang i Pablo Chacón.
Nogales, która jest biofizykiem pracującym także w Howard Hughes Medical Institute i UC Berkeley, bada ekspresję genów od 18 lat. Jej zespół dokonał kilku znaczących odkryć w ostatnich latach, jednak Nogales nazywa obecne wyniki najbardziej przełomowymi. „To jest coś, co znajdzie się w podręcznikach do biochemii”, mówi. „Znamy teraz strukturę organizacji białek, która formuje się na początku każdego genu. Nikt wcześniej nawet nie otarł się o taki wynik, ponieważ badania na tym polu są bardzo trudne do prowadzenia tradycyjnymi metodami”.
Sposób przepływu informacji genetycznej w żywych organizmów jest zwany „centralnym dogmatem biologii molekularnej”. Komórki stale włączają i wyłączają geny w odpowiedzi na to, co dzieje się w ich środowisku i aby to zrobić, komórka wykorzystuje DNA- wielką bibliotekę genetyczną, znajduje odpowiednią sekcję i robi jej kopię w postaci przekaźnikowego RNA, czyli mRNA, które potem jest wykorzystane do wyprodukowania odpowiedniego białka.
Kłopot polega na tym, że ta „biblioteka” nie ma numerów stron czy spisu treści. W zamian za to ma znaczniki w postaci specyficznych sekwencji DNA (zwanych promotorami) aby wskazać gdzie zaczyna się i gdzie kończy dany gen. Jak więc polimeraza- enzym, który dokonują transkrypcji, wie gdzie zacząć? „DNA jest wielka, wielką molekułą. W tej mieszaninie trzeba znaleźć początek genu, aby polimeraza wiedziała gdzie zacząć jego kopiowanie”, mówi Nogales. „Czynnik transkrypcyjny TFIID jest kompleksem protein, który zajmuje się dokładnie tym czyli rozpoznaje i wiąże DNA do regionów promotorów.”
To, co udało się Nogales i jej zespołowi, to zobrazować, z niezwykłą dokładnością, jak TFIID łączy się z DNA i rozpoznaje region startowy (promotorowy) genu. Okryli oni także jak służy on jako rodzaj lądowiska dla tej maszynerii molekularnej, która musi zgrupować się na tym etapie. Nazywamy ją tzw. kompleksem preinicjacyjnym transkrypcji (PIC). PIC pozycjonuje polimerazę tak, aby mogła rozpocząć transkrypcję.
„Nie dość, że TFIID wykonuje wszystkie te zadania; musi także potrafić wykonywać je w inny sposób dla innych genów na dowolnym etapie życia organizmu”, mówi Nogales.
TFIID (niebieski) podczas kontaktu z DNA i angażowania polimerazy (szary) do transkrypcji genu. Początek genu zaznaczony jest różowym światłem. (Image: Eva Nogales/Berkeley Lab)
Louder: „Stworzyliśmy pierwszy model strukturalny pełnego ludzkiego TFIID oraz PIC. Nasz model daje nowatorskie wejrzenie w PIC, opisując też rolę TFIID w angażowaniu innych komponentów PIC do promotorów DNA. Pokazuje także jak długo obserwowana konformacyjna elastyczność TFIID ogrywa rolę przy regulacji inicjacji transkrypcji”.
Białka były tradycyjnie badane przy użyciu krystalografii, jednak w tym wypadku ta technika była niemożliwa do zastosowania. „TFIID nie było dostępne metodom krystalografii, ponieważ nie ma wystarczająco dużo materii do krystalizacji, ma bardzo elastyczne elementy i jest dużych rozmiarów”, mówi Nogales. „Wszystkie te problemy możemy pokonać dzięki cryo-EM.”
Mikroskop krioelektronowy, w którym próbki są obrazowane przy kriogenicznych temperaturach bez konieczności użycia barwników czy utrwalaczy, używany jest w biologii strukturalnej od lat 80. ubiegłego wieku. Dzięki zaawansowanej analizie komputerowej, badacze są w stanie uzyskać trójwymiarowe obrazy. Jednak cryo-EM przeszedł w ostatnich latach rewolucję, między innymi dzięki udziałowi Berkeley Lab, która ulepszyła jego rozdzielczość i zredukowała ilość potrzebnych danych niemal stukrotnie.
„Wiele systemów biologicznych, o których myśleliśmy, że są niemożliwe do zbadania w dużej rozdzielczości okazały się bardziej dostępne”, mówi Nogales. „Teraz rozdzielczość umożliwia nam dostrzeżenie atomowych detali. To obszar, w którym Berkeley Lab jest jednym z liderów”.
Podczas gdy te badania dostarczyły ważnego i nowego wglądu w ekspresję genów, Nogales zauważa, że pozostaje wciąż dużo pracy. Planuje teraz zbadać jak TFIID jest w stanie rozpoznawać różne sekwencje w różnych typach genów i jak jest regulowany przez kofaktory i aktywatory.
„Jesteśmy dopiero na początku”, mówi. „Kompleks TFIID jest bardzo, bardzo istotny. Teraz przełamaliśmy już pewne bariery i możemy zacząć generować modele atomowe pokazujące szczegóły tego, jak DNA jest wiązane”.
Źródło: http://www.nanowerk.com/news2/biotech/newsid=42953.php
Tagi: dna, gen, ekspresja genów
wstecz Podziel się ze znajomymi