Fizycy stworzyli konwerter pojedynczych fotonów
Kwantowy internet oraz hybrydowe komputery kwantowe, zbudowane z podsystemów pracujących dzięki różnym zjawiskom fizycznym, przestają być mrzonką fantastów. Na łamach prestiżowego czasopisma „Nature Photonics” fizycy z Wydziału Fizyki Uniwersytetu Warszawskiego (FUW) i Uniwersytetu w Oksfordzie (UO) właśnie zaprezentowali kluczowy element takich systemów: elektrooptyczny przyrząd pozwalający w kontrolowany sposób modyfikować cechy pojedynczych fotonów. W przeciwieństwie do dotychczasowych, laboratoryjnych konstrukcji, nowe urządzenie pracuje z nieosiągalną dotychczas wydajnością, jest przy tym stabilne, niezawodne i kompaktowe. O badaniach poinformowano w komunikacie na stronie FUW.
Zbudowanie wydajnego przyrządu do kwantowego modyfikowania pojedynczych fotonów było zadaniem wyjątkowo trudnym z uwagi na fundamentalne różnice między informatyką klasyczną a kwantową.
Współczesna informatyka polega na przetwarzaniu grup bitów, z których każdy znajduje się w ściśle określonym, doskonale znanym stanie: jest równy albo 0, albo 1. Grupy takich bitów są ciągle przesyłane zarówno między różnymi podzespołami w ramach jednego komputera, jak też między różnymi komputerami w sieci. Obrazowo sytuację tę można porównać z przekazywaniem z miejsca na miejsce tacy z leżącymi na niej monetami, przy czym każda moneta jest skierowana ku górze albo reszką, albo orzełkiem.
W informatyce kwantowej sprawy się komplikują. Zjawiskiem leżącym u jej podstaw jest superpozycja stanów. Kwantowy bit – nazywany kubitem – jednocześnie znajduje się i w stanie 0, i w stanie 1. W ramach użytej przed chwilą analogii odpowiadałoby to sytuacji, gdy moneta wiruje na krawędzi. O kwantowym przetwarzaniu informacji można mówić tak długo, jak długo w trakcie wszystkich operacji udaje się utrzymać superpozycję stanów – a więc jak długo przy przekazywaniu tacy nie wytrąca się ze stanu wirowania żadnej monety.
„W ostatnich latach fizycy opanowali sztukę generowania impulsów świetlnych o konkretnej długości fali czy polaryzacji, składających się z pojedynczego kwantu – czyli wzbudzenia – pola elektromagnetycznego. Dziś potrafimy więc wytwarzać dokładnie takie kwantowe >>wirujące monety<<, jakie chcemy” - mówi dr Michał Karpiński z Instytutu Fizyki Doświadczalnej FUW, jeden ze współautorów publikacji. „Ale apetyt rośnie w miarę jedzenia! Skoro mamy już pojedyncze kwanty światła o zadanych cechach, fajnie byłoby móc z tymi cechami coś zrobić. Zadanie brzmi więc mniej więcej tak: masz wirującą srebrną monetę, prześlij ją z miejsca na miejsce, ale po drodze szybko i dokładnie zamień ją na złotą, naturalnie nie wytrącając jej z wirowania. Od razu widać, że problem wcale nie jest trywialny”.
Dotychczasowe metody modyfikowania pojedynczych fotonów korzystały ze zjawisk optyki nieliniowej. W praktyce sprowadzały się do prób wymuszania oddziaływania między pojedynczym fotonem a bardzo silną, pompującą wiązką światła. O tym, czy poddawany operacji foton zostanie zmodyfikowany, decydował czysty przypadek. Ponadto rozproszone światło wiązki pompującej mogło tu zanieczyścić strumień pojedynczych fotonów.
Przy budowie nowego przyrządu grupa z FUW i Oksfordu postanowiła więc skorzystać z innego zjawiska fizycznego: efektu elektrooptycznego, występującego w niektórych kryształach. „To dość zaskakujące, że do modyfikowania cech kwantowych pojedynczych fotonów możemy z powodzeniem używać technik bardzo podobnych do stosowanych w standardowej telekomunikacji światłowodowej" - komentuje dr Karpiński.
Za pomocą nowego urządzenia naukowcy – nie niszcząc superpozycji – sześciokrotnie wydłużyli czas trwania impulsu jednofotonowego, co automatycznie wiązało się z zawężeniem jego widma, czyli spektrum kolorów. Szczególnie ważny jest tu fakt, że całą operację udało się zrealizować przy zachowaniu bardzo dużej wydajności. Dotychczasowe konwertery działały tylko w warunkach laboratoryjnych i były w stanie zmodyfikować zaledwie jeden foton na kilkadziesiąt. Tymczasem nowy przyrząd przy zachowaniu niskiego poziomu szumów pracuje z wydajnością przekraczającą 30 proc. - większą nawet 200-krotnie w stosunku do niektórych dotychczasowych rozwiązań.
„W istocie przetwarzamy każdy foton wlatujący do kryształu. Wydajność nie jest stuprocentowa nie z uwagi na fizykę zjawiska, ale z powodu trudnych do uniknięcia strat o charakterze czysto technicznym, pojawiających się na przykład przy wprowadzaniu światła do światłowodów i wyprowadzania go z nich” - wyjaśnia doktorant Michał Jachura (FUW).
Nowy konwerter jest nie tylko wydajny i niskoszumny, ale także stabilny i kompaktowy: urządzenie można zamknąć w pudełku o rozmiarach kilkunastocentymetrowych, łatwym do zainstalowania na światłowodzie przesyłającym pojedyncze fotony. Takie urządzenie pozwala realistycznie myśleć o budowie np. hybrydowego komputera kwantowego, którego poszczególne podzespoły przetwarzałyby informację kwantowo z użyciem różnych zjawisk fizycznych.
Część eksperymentalną badań zrealizowano na Wydziale Fizyki Uniwersytetu Oksfordzkiego, w grupie badawczej kierowanej przez dr. Briana J. Smitha, gdzie dr Karpiński przebywał na stażu podoktorskim w ramach prestiżowego grantu europejskiego imienia Marii Skłodowskiej-Curie. Po stronie polskiej badania sfinansowano z grantów Narodowego Centrum Nauki i 7. Programu Ramowego Unii Europejskiej.
Źródło: www.naukawpolsce.pap.pl
wstecz Podziel się ze znajomymi