Farby jako optoelektroniczne układy logiczne?
Przecież TiO2 jest najpopularniejszym pigmentem na świecie znanym pod nazwą biel tytanowa. Jak zapewniają producenci farba ta ma bardzo dobrą siłę krycia, wysoką odporność na światło oraz jest przyjazna środowisku. A błękit pruski to bardzo znany niebieski pigment wykorzystywany w cyjanotypii do wywoływania negatywów. Jeśli dodamy do tego zestawu jeszcze CdS – żółcień kadmową to możemy narysować bardzo prosty, ale całkiem ładny obrazek:
Ale zbudować układy logiczne? To co innego!
A jednak! Rosnące zapotrzebowanie na tanią energię elektryczną, szybsze komputery, czy większe nośniki pamięci, a co za tym idzie coraz bardziej postępująca miniaturyzacja urządzeń elektronicznych sprawia, że stosowane dotychczas układy elektroniczne wydają się być niewystarczające i poszukuje się nowych rozwiązań spełniających wymagania współczesnego świata. Jednym z proponowanych rozwiązań tego problemu wydaje się być zastosowanie układów molekularnych do konstrukcji układów elektronicznych. Idea ta została zapoczątkowana przez A. P. de Silvę, który w 1993 roku po raz pierwszy zsyntezował molekularne bramki logiczne.[2] Dalsze badania wykazały, że modyfikowane nanokrystaliczne półprzewodniki szerokopasmowe mogą zostać wykorzystane do budowy zaawansowanych układów optoelektronicznych. Intensywnie rozwijająca się obecnie nowa dziedzina nauki jaką jest elektronika molekularna stwarza coraz to nowe możliwości zastępowania klasycznych urządzeń elektronicznych opartych na krzemie, elementami działającymi na poziomie molekularnym.[3, 4]
I tak kontynuując badania nad półprzewodnikami modyfikowanymi powierzchniowo, po 5 latach udało nam się uzyskać nowe materiały optoelektroniczne, które będą mogły znaleźć zastosowanie jako przełączniki optoelektroniczne. Układy te są oparte na dwutlenku tytanu modyfikowanym pochodnymi 1,4-benzochinonu. Badania nad tymi materiałami były prowadzone w ramach programu VENTURES Fundacji na rzecz Nauki Polskiej. Projekt finansowany jest w ramach Programu Operacyjnego Innowacyjna Gospodarka, Priorytet 1. Badania i rozwój nowoczesnych technologii, Działanie 1.2 Wzmocnienie potencjału kadrowego nauki.
Uzyskany wynalazek został zgłoszony do ochrony patentowej w Urzędzie Patentowym RP 29 grudnia 2011 roku (numer zgłoszenia P 397 593). Badane układy mogą posłużyć do projektowania i budowy nowych urządzeń elektronicznych w tym molekularnych bramek i układów logicznych, elementów optoelektronicznych czy fotowoltaicznych. I nawet jeśli jeszcze daleka droga do osiągnięcia zamierzonego celu to nasz obrazek wygląda już o wiele bardziej kolorowo:
Informacje zostały prekazane przez Panią Agnieszkę Podborską - doktorantkę wydział Chemii UJ
Źródło: http://www.nanonet.pl
Literatura:
1. Szaciłowski, K., W. Macyk, and G. Stochel, Synthesis, structure and photoelectrochemical properties of the TiO2 - Prussian blue nanocomposite. J. Mater. Chem., 2006. 16: p. 4603-4611.
2. de Silva, A.P., H.Q.N. Gunaratne, and C.P. McCoy, A molecular photonic AND gate based on fluorescent signalling. Nature, 1993. 364: p. 42-44.
3. Szaciłowski, K., Digital information processing in molecular systems. Chem. Rev., 2008. 108: p. 3481–3548.
4. Balzani, V., A. Credi, and M. Venturi, Molecular devices and machines. Concepts and perspectives for the nanoworld2008, Weinheim: Wiley-VCH.
Tagi: optoelektroniczny układ logiczny, farba, nauka, badania, logiczny układ molekularny, lab, laboratoria, laboratorium
wstecz Podziel się ze znajomymi