Naukowcy analizują role nanostruktur dookoła komórek mózgowych
Badacze z Freiburga próbują rozszyfrować wpływ nanostruktur wokoło komórek mózgowych na funkcje centralnego układu nerwowego.
Nagromadzenie proteiny zwanej amyloid-beta w duże nierozpuszczalne złogi zwane płytkami powoduje chorobę Alzheimera. Jednym z aspektów tej choroby, któremu nie poświecono wystarczająco dużo uwagi, jest rola, jaką odgrywa w niej struktura środowiska mózgowego. Jak makromolekuły i grupy makromolekularne, takie jak polisacharydy, wpływają na interakcje międzykomórkowe w mózgu? W artykule opublikowanym w czasopiśmie "Proceedings of the National Academy of Sciences", prof. Prasad Shastri i jego doktorant Nils Blumenthal, we współpracy z prof. Berndem Heimrichem i prof. Ola Hermansonem, odkryli, że makromolekuły lub komórki wspierające jak astrocyty dają fizyczne oznaki w postaci losowej chropowatości czy marszczeń, które są kluczowe dla utrzymywania zdrowych interakcji międzykomórkowych w hipokampie. Ten rejon mózgu można porównać do systemu GPS- przetwarza i przechowuje dane przestrzenne. Przy chorobie Alzheimera obszar ten ulega degeneracji. „Długo myślano, że tylko sygnały biologiczne mają wpływ na zdrowie i funkcjonowanie mózgu. My jednak pokazujemy, że struktura molekuł otaczających te komórki może być równie ważna.”
Naukowcy odkryli, że istnieje pewien ograniczony obszar chropowatości w nanoskali, który działa dobroczynnie na neurony. Jeśli chropowatość nie mieści się w tym obszarze, to neurony doświadczają szkodliwych zmian w swoim funkcjonowaniu. Przez analizę ludzkiej tkanki mózgowej pobranej od pacjentów, którzy cierpieli na chorobę Alzheimera, Shastri i jego koledzy znaleźli ogniwo łączące rejony w mózgu posiadające nagromadzenie proteiny amyloid-beta (odpowiedzialne za śmierć neuronów) i niepożądane zmiany w nanotopografii tkanki otaczającej te neurony, a dokładniej pewne cechy jej powierzchni.
Shastri i jego współpracownicy odkryli, że astrocyty tworzą fizyczne środowisko, w którym neurony dobrze funkcjonują. „Nasze odkrycie pokazuje po raz pierwszy, że kanaliki jonowe mogą odegrać ważną rolę w funkcjonowaniu centralnego systemu nerwowego i odkrywaniu jego schorzeń. Może to być szansa na powstanie nowych środków farmakologicznych”, mówi Blumenthal. Używając syntetycznych substratów o określonej szorstkości, badacze dowiedzieli się, że wrażliwe na rozciąganie molekuły, w tym tzw. kanaliki jonowe Piezo-1 w komórkach mózgowych myszy, sterują interakcjami pomiędzy nanotopografią, astrocytami i neuronami. Wcześniejsze badania wykazały, że molekuła MIB-1, ludzki odpowiednik Piezo-1, była zmodyfikowana u pacjentów cierpiących na chorobę Alzheimera.
Prof. Prasad Shastri prowadzi badania w jednostkach Institute for Macromolecular Chemistry oraz Excellence Cluster BIOSS Centre for Biological Signalling Studies na Uniwersytecie we Freiburgu. Doktorant student Nils Blumenthal otrzymuje wsparcie od BIOSS. Prof. Bernd Heimrich pracuje w Institute of Anatomy and Cell Biology Uniwersytetu we Freiburgu, natomiast prof. Ola Hermanson pochodzi z Intytutu Karolinska w Sztokholmie.
Źródło: http://www.azonano.com/news.aspx?newsID=31400
Tagi: nanostruktura, komorka mozgowa, uklad nerwowy
wstecz Podziel się ze znajomymi