Odkryto interakcję otwierającą kanał do jądra komórki
Komórki opracowały wiele struktur transportowania ładunku molekularnego, jednak system porów jądra ze swoją wyjątkową ośmiokątną symetrią wyróżnia się na tle innych. Ten, jak na standardy komórkowe, duży i wielofunkcyjny portal kontroluje dostęp i wyjście z centrali komórki, czyli jądra.
W badaniach opublikowanych 4 czerwca tego roku w „Cell”, naukowcy z Uniwersytetu Rockefellera odkryli kluczowe etapy w dynamice, która rozszerza i zawęża pory tego portalu. Jest to duży krok naprzód w ich wysiłkach zmierzających ku wyodrębnieniu mechanizmów, dzięki którym centralny kanał komórki dopuszcza konkretne molekuły. Ich praca, oparta na danych kwantytatywnych, ujawniła, że system porów jądra komórkowego jest strukturą bardziej bezwładną niż dotychczas myślano.
„Dominujące poglądy przedstawiały wcześniej system porów jako sztywny kanał. My jednak pokazaliśmy, że odpowiada on na potrzeby transportu, otwierając się i zamykając w eleganckim i prostym cyklu”, mówi autor badań Gunter Blobel, profesor i kierownik Laboratorium Biologii Komórkowej. „Nasze najnowsze badania pokazują jak białka transportujące odpowiedzialne za przeprowadzanie ładunku przez pory jądra komórkowego skłaniają pierścień na środku kanału to rozszerzenia”.
Ponad miliard lat temu, niektóre komórki zdobyły ewolucyjną przewagę polegająca na otaczaniu ich DNA ochronną błoną, tworząc tym samym jądro komórkowe. Jednak ta innowacja wygenerowała problem: jak przemieszczać molekuły do środka i na zewnątrz? System porów był dobrym rozwiązaniem, opisanym po raz pierwszy ponad 50 lat temu przez Michaela Watsona, postdoca w Palade-Porter Laboratory. Lata później, laboratorium Blobela zidentyfikowało pierwsze białka działające jak cegiełki tworzące centrum, czyli nukleoporyny. Przez pewien czas myślano, że nieustrukturyzowane cząsteczki nukleoporyny broniły centralnego kanału przez utworzenie żelopodobnej bariery. Jednak trwające prace w laboratorium Blobela wskazują, że kanał centralny wcale nie jest sztywny. W poprzedniej publikacji ("Molecular Architecture of the Transport Channel of the Nuclear Pore Complex") naukowcy odkryli elastyczny pierścień w środku kanału, którego średnica była zdeterminowana przez dwie z około trzydziestu nukleoporyn- Nup58 oraz Nup54, które cyklicznie łączą się i rozdzielają. Kiedy nukleoporyny łączą się ze sobą, pierścień rozszerza się do średnicy około 50 nanometrów, czyli do rozmiaru odpowiedniego do przyjęcia podjednostki rybosomalnej. Następnie cząsteczki rozdzielają się, a pierścień dzieli się na trzy mniejsze pierścienie o średnicach około 20 nanometrów.
Najnowsze badania prowadzone przez postdoca Junseocka Koh w laboratorium Blobela, skupiają się na tym, jak białko transportujące zwane karioferyną inicjuje rozszerzanie się pierścienia. Aby to zbadać, Koh zmierzył zmiany w temperaturze podczas reakcji pomiędzy trzema związkami: karioferyną, Nup58 i Nup54. Dane biofizyczne odkrywają dynamikę energetyczną tych reakcji i dostarczają wskazówek co do zachowania molekuł. Aby rozwikłać ten skomplikowany system, Koh matematycznie analizował dane zebrane w różnych warunkach. Jego wyniki odkryły niespodziewaną rolę nieuporządkowanego obszaru Nup58.
„Odkryliśmy, że kiedy jedna cząsteczka karioferyny łączy się z co najmniej dwoma nieuporządkowanymi regionami Nup58, to stabilizuje je w taki sposób, że rozszerzony układ, w którym sąsiadujące regiony uporządkowanego Nup58 łączą się z Nup54 staje się bardziej dogodny. W rezultacie, im więcej obecnych cząsteczek karioferyny, tym bardziej rozszerzony staje się pierścień”, mówi Koh. „Na podstawie tych wyników byliśmy w stanie przewidzieć stopień rozszerzenia pierścienia w zależności od ilości obecnych białek transportujących”.
„To odkrycie jest kluczowym krokiem w rozumieniu jak system porów jądra komórkowego otwiera się i zamyka, a jego implikacje sięgają poza biologię komórkową”, mówi Blobel, który pracuje także w Howard Hughes Medical Institute. „Może okazać się, że nawet subtelne problemy w funkcjonowaniu systemy porów jądra z czasem może doprowadzić do wielu chorób”.
Źródło: http://www.nanowerk.com/news2/biotech/newsid=40335.php
Tagi: kanal, por, jon, transport, komorka, karioferyna, dynamika
wstecz Podziel się ze znajomymi