Grafen jako superdoładowane szkło powiększające
„To rzeczywiście jedno z największych wyzwań w dziedzinie optyki”, mówi prof. dr Darrick Chang, lider grupy ds. kwanto-nanofotoniki teoretycznej w ICFO. „Realizacja nieliniowych efektów optycznych wymaga zazwyczaj dużej intensywności lasera, a wynikający z tego pobór mocy – lub wielkość wymaganych źródeł zasilania – często sprawia, że staje się ona niepraktyczna, jak na przykład w przypadku urządzeń przenośnych”.
Ostatecznym celem byłoby uzyskanie efektów nieliniowych na poziomie pojedynczych kwantowych cząstek światła, a osiągnięcie tego celu jest warte świeczki. Umożliwiłoby to w szczególności uzyskanie najlepszej możliwej wydajności oraz szerokie zastosowanie klasycznych urządzeń nieliniowych, ułatwiając jednocześnie otrzymanie zakłócających kwantowych protokołów informacyjnych, które nie mogą być realizowane na klasycznych platformach.
Właśnie z takimi założeniami, w 2014 r. rozpoczęto projekt GRASP. „Celem projektu było zbadanie, czy stosunkowo nowy i egzotyczny materiał, jakim jest grafen, może pozwolić na wzajemne oddziaływanie impulsów światła o znacznie mniejszej mocy”, wyjaśnia. Wykorzystanie grafenu jest zasadniczo nowością w optyce nieliniowej, ale prof. dr Chang i jego zespół uznali, że wyjątkowe właściwości materiału pozwolą nawet pojedynczym cząsteczkom światła osiągnąć wymaganą intensywność umożliwiającą uruchamianie procesów nieliniowych.
„Jedną z unikalnych właściwości grafenu, która została zarówno teoretycznie przewidziana, jak i eksperymentalnie zaobserwowana, jest to, że może on skutecznie ogniskować lub przestrzennie ograniczać światło do skal o bardzo małej długości. Moglibyśmy tu użyć analogii do szkła powiększającego, które umożliwia skupienie światła słonecznego w małej plamce, co sprawia, że jest ono wystarczająco intensywne, by spalić kawałek papieru”, wyjaśnia prof. dr Chang.
W ramach tej analogii grafen można uznać za superdoładowane szkło powiększające. Może wcisnąć światło w przestrzeń milion razy mniejszą niż najlepsze okulary powiększające czy soczewki, a wynikająca z tego intensywność byłaby na tyle wysoka, że wyzwalałaby nieliniowe procesy optyczne.
W ramach projektu GRASP po raz pierwszy można było zaobserwować nieliniowe efekty wynikające z tego efektu szkła powiększania. Jest to szczególnie niezwykłe, biorąc pod uwagę fakt, że grafen ma grubość zaledwie jednego atomu, podczas gdy standardowe nieliniowe urządzenia optyczne są wykonane z materiałów o dużych rozmiarach. Chociaż do ostatecznego celu, jakim jest opracowanie całkowicie nowej generacji technologii opartej na nieliniowych urządzeniach optycznych, które mogą pracować z bardzo niską mocą, jest jeszcze daleko, prace konsorcjum stanowią ważny krok w tym kierunku.
„Oczywiście, aby grafen stał się dojrzałą technologią optyki nieliniowej, potrzeba o wiele więcej pracy. Stworzyliśmy jednak wiele ważnych elementów, które stanowią podstawę do dalszych badań. Chodzi tu m.in. o możliwość uzyskania nieliniowych efektów optycznych w grafenie w wyniku silnego ograniczenia światła, nauczenie się wytwarzania grafenu przy użyciu materiałów o wyższej jakości, konstruowanie nowych urządzeń, które mogą ograniczyć pole widzenia nie miliony, ale miliardy razy lepiej niż najlepsze obiektywy, a także lepsze zrozumienie złożonych interakcji między grafenem a światłem”, mówi prof. dr Chang.
Chociaż pewnie jest jeszcze za wcześnie, aby mówić o konkretnych drogach w kierunku komercjalizacji, wykorzystanie grafenu w szeroko stosowanych klasycznych i nieliniowych technologiach optycznych w skali chipów jest obecnie o wiele bardziej prawdopodobne. To tłumaczy, dlaczego prof. dr Chang zamierza kontynuować swoje prace: „Po przygotowaniu ważnych wymaganych elementów naszym celem jest kontynuacja tej ekscytującej linii badań i rozpoczęcie łączenia tych elementów oraz realizacji podstawowych, ale prawdziwych urządzeń w nadchodzących latach”, mówi.
Źródło: www.cordis.europa.eu
wstecz Podziel się ze znajomymi