- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Użycie pola elektrycznego do kształtowania jakości produktów
Należy podkreślić, że powstałe pod wpływem krótkich, pulsacyjnych impulsów elektrycznych o określonym napięciu pory cechują się dużą niestabilnością. Jak donosi literatura, powstają one szybko, bo w około 10-6 s i zanikają po zakończeniu ekspozycji. Odwrócenie skutków elektroporacji, a więc ponowna integracja błony przebiega nieco wolniej, bo od kilku sekund nawet do minuty. Wartość napięcia niezbędnego do efektywnego wytworzenia porów o pożądanej średnicy wahać się może od 10 do 80 kV/cm. Różna jest także średnica porów. Zawierać się może w przedziale od 1 do 10 nm, w zależności od zastosowanych parametrów. Aby uzyskać jednolite rezultaty procesu elektroporacji, należy dostosować parametry indywidualnie dla danego surowca. Najczęściej dokonuje się tego poprzez eksperymentalne wyznaczenie warunków procesu. Szczególnie istotny jest dobór odpowiedniego napięcia. Jego wartość z jednej strony musi zapewniać powstanie porów, co oznacza, iż nie może więc być zbyt niskie (niewystarczające do wywołania powstania pora). Natomiast z drugiej strony, zbyt duże napięcie nie gwarantuje odwracalności procesu i może powodować nieodwracalne zmiany w błonie, tj. nadmierne powiększenie wolnych przestrzeni, a w konsekwencji lizę komórki (SKOŁUCKA I WSPÓŁAUT., 2010; TOEPFL I WSPÓŁAUT., 2007).
Kolejne trudności w procesie elektroporacji związane są z niestabilnością utworzonych porów oraz brakiem możliwości ścisłej kontroli ich rozmiaru i czasu trwania. Związane jest to z trudnościami doboru warunków w taki sposób, aby elektropor zachowywał przez dłuższy czas swoją średnicę. Równie istotnym parametrem jest czas trwania impulsu elektrycznego o ustalonej amplitudzie, liczba impulsów w serii oraz długość przerw pomiędzy nimi. Nie bez znaczenia są także wielkość komórek i ich stężenie w zawiesinie (NAUMOWICZ I FIGASZEWSKI, 2011). W doświadczeniach laboratoryjnych do indukcji porów najczęściej stosuje się zmienną amplitudę w czasie trwania pulsów, a stosowane napięcia przyjmują wartości powyżej dolnego progu wrażliwości błony. Zarówno liczba jak i średnica efektywnych porów wzrasta z amplitudą i czasem trwania impulsu (JAMROZ I PANKIEWICZ, 2004). Niewątpliwą niedogodność stanowi także zjawisko niespecyficznego transportu przez błonę. Nie ma możliwości pełnego monitorowania, jakie substancje wnikają do wnętrza komórki, a jakie mogą być z niej tracone.
W celu wywołania zjawiska elektroporacji najpowszechniej wykorzystuje się PEF, to jest pole impulsowe (zwane także pulsacyjnym). Podstawą jego działania jest występowanie szybkich różnic między wysoką wartością napięcia (generującą powstanie pora) a jego całkowitym brakiem. Naukowcy, zachęceni skutecznością metody, prowadzą badania nad możliwością modyfikacji tego procesu poprzez np. przeprowadzanie elektroporacji przy ustalonym prądzie. Metoda ta umożliwia uzyskanie stabilności elektroporów przez stosunkowo długi czas oraz w pewnym stopniu kontrolowania ich średnicy. Jest to możliwe dzięki stabilizującemu efektowi sprzężenia zwrotnego, który z jednej strony zapobiega nadmiernemu powiększaniu się wolnych przestrzeni i zniszczeniu membrany, a z drugiej zamknięciu pora. Dzięki tym właściwościom eliminowane są niedogodności występujące w aplikacji PEF. Niestety, metoda ta z powodzeniem stosowana była wyłącznie na płaskich warstwach lipidowych. Coraz częściej w literaturze przywoływana jest także metoda CACC (ang. chronoamperometry after current clamp), która daje możliwości generowania, a następnie utrzymania elektropora o określonym rozmiarze bez sprzężenia zwrotnego. W metodzie tej elektroporacja przebiega przy ustalonym prądzie, a powstawanie pora i stabilizacja jego brzegu przebiega zgodnie z poniższym schematem:
Rysunek 2. Schemat elektroporacji umożliwiający dobór parametrów elektropora w warunkach stało-napięciowych (na podstawie: KOTULSKA 2007B).
Tagi: elektroporacja, pulsacyjne pole elektryczne, jakość żywności
wstecz Podziel się ze znajomymi
Recenzje