- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Naukowcy z PWr tworzą urządzenie do tanich badań nowotworów piersi
Z kolei obraz transmisyjny rozkładu tłumienia fal w połączeniu z obrazem ich prędkości pokazuje nie tylko, gdzie jest nowotwór, ale także jaki ma charakter. Fale dźwiękowe są mocno tłumione w tkankach gęstych i w nowotworach, a w nowotworach złośliwych to tłumienie jest znacznie większe niż w przypadku łagodnych.
- Połączenie takich dwóch obrazów daje już podstawę do diagnozy – podkreśla dr hab. Opieliński, prof. PWr. – Jeśli bowiem na danym obrazie mamy obszar, w którym prędkość fali jest większa od wyskalowanej według wieku pacjentki wartości progowej, ale jej tłumienie nie, oznacza to, że mamy do czynienia z nowotworem i jest on łagodny. Kiedy natomiast prędkość ultradźwięków jest większa i jednocześnie tłumienie jest większe od ustalonych wartości progowych, wiemy już, że zdiagnozowaliśmy nowotwór z dużym prawdopodobieństwem złośliwości. Nasz tomograf umożliwia wówczas oznaczenie obszaru, w którym jest ten nowotwór. Ponadto lekarz może obejrzeć jeszcze obraz odbiciowy, który bardzo szczegółowo pokazuje mu naczynia krwionośne i limfatyczne, więzadła Coopera, przewody mlekowe i inne małe struktury włókniste. Nakładając ten obraz na pozostałe dwa, od razu może przewidywać, jaki rodzaj nowotworu występuje u pacjentki. Rozrost naczyń krwionośnych wskaże na guz spikularny złośliwy, natomiast wyraźny obrys owalny zasugeruje, że może to być np. torbiel.
Badający będzie też mógł skorzystać dodatkowo z obrazu USG dowolnego przekroju piersi, tworzonego za pomocą głowicy pierścieniowej dookoła, w czasie rzeczywistym, a także obejrzeć nowotwór w 3D lub w dowolnym przekroju poprzecznym.
24 lata badań
Obecnie urządzenie skonstruowane wspólnie przez pracowników firmy Dramiński i naukowców PWr. przechodzi testy medyczne in vivo, czyli badania na pacjentkach. Wstępne wyniki rozpoznawania nowotworów są w przypadku tego tomografu bardzo obiecujące i porównywalne do wyników, jakie wskazują poszczególne metody badań (mammografia, USG, MRI). Jego twórcy skupiają się już więc tylko na przyspieszeniu pracy urządzenia, testach medycznych i optymalizacji algorytmów. – Obecnie wykonanie jednego przekroju zajmuje nam około sześciu sekund, ale pracujemy już nad algorytmami, które pozwolą nam to przyspieszyć – tłumaczy dr hab. Krzysztof Opieliński, prof. PWr. Firma zajmuje się też graficznym dopracowaniem wyświetlanych obrazów tak, by lekarze mogli sprawnie je analizować.
Zgodnie z planami firmy Dramiński, urządzenie powinno pojawić się na rynku pod koniec 2018 r.
Dla dr. hab. Krzysztofa Opielińskiego, prof. PWr, będzie to zamknięcie pewnego ważnego etapu. – Badaniom prowadzącym do skonstruowania tego tomografu poświęciłem dużą część swojego życia – opowiada. – Wszystko zaczęło się jeszcze w 1993 r., kiedy kierownik Pracowni Techniki Ultradźwięków, prof. Tadeusz Gudra, przywiózł z Hiszpanii artykuł na temat metody tomografii ultradźwiękowej. W tamtych czasach to była absolutna nowość, a wykorzystanie jej do medycznych badań in vivo w czasie rzeczywistym było jeszcze niemożliwe ze względu na problemy z przetwarzaniem danych. Ówczesne urządzenia po prostu nie radziły sobie z takim ogromem informacji. Zainteresowałem się jednak tą tematyką i zacząłem badać tę metodę, najpierw pod kątem symulacji, a następnie opracowałem oprogramowanie do rekonstruowania obrazów i zaczęliśmy tworzyć stanowisko pomiarowe. Początkowo badaliśmy tylko możliwości tomografii transmisyjnej. Nie mieliśmy funduszy na to, żeby zrobić małe przetworniki, dlatego korzystaliśmy z dwóch dużych przesuwanych i obracanych mechanicznie głowic ultradźwiękowych, a badania wykonywaliśmy na fantomach. Wyniki były idealne. Uzyskiwaliśmy wspaniałe przekroje w bardzo dużych rozdzielczościach. Zrobienie jednego zajmowało nam jednak wówczas od pięciu do ośmiu godzin.
wstecz Podziel się ze znajomymi
Recenzje