- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Cholinoesterazy jako wskaźniki w monitoringu biologicznym
Streszczenie
U zwierząt i u ludzi występują dwa enzymy z podklasy cholinoesteraz: acetylocholinoesteraza (AChE) i butyrylocholinoesteraza (BChE). Enzymy te są w 65% homologiczne pod względem sekwencji aminokwasowych, co warunkuje występowanie pomiędzy nimi wielu wspólnych cech. Jedną z nich jest zdolność do hydrolizy acetylocholiny (ACh), pełniącej rolę przekaźnika w układzie nerwowym. Proces ten zapobiega nadmiernemu gromadzeniu się neurotransmitera na zakończeniach nerwowych, dzięki czemu nie dochodzi do nadpobudzenia układu cholinergicznego i uszkodzenia OUN. Ze względu na swoją przynależność do klasy hydrolaz grupy B cholinoesterazy są bardzo wrażliwe na toksyczne działanie estrów fosforoorganicznych, które stanowią substancję czynną wielu obecnych na rynku pestycydów. Insektycydy fosforoorganiczne, jak i karbaminianowe, jako inhibitory esteraz cholinowych powodują zahamowanie aktywności katalitycznej enzymów, upośledzając przy tym proces rozkładu acetylocholiny. Wymienione związki, będące częstym składnikiem środków ochrony roślin, są przyczyną wielu poważnych zatruć, które nierzadko kończą się śmiercią. Obecnie najbardziej narażeni na toksyczny wpływ pestycydów są rolnicy. Powszechne stosowanie tych substancji w gospodarstwach rolnych wiąże się z długotrwałą ekspozycją na ich szkodliwe działanie. Szacuje się, że rocznie w wyniku zatrucia pestycydami fosforoorganicznymi dochodzi aż do 260 000 zgonów. Na takie zatrucia narażeni są także konsumenci żywności zawierającej pozostałości pestycydów, dlatego bardzo ważna jest kontrola spożywanych przez nas produktów pochodzenia roślinnego. Liczne badania epidemiologiczne wykazały znacznie obniżoną aktywność cholinoesteraz u osób mających długotrwały kontakt z tym rodzajem insektycydów w stosunku do przyjętych wartości referencyjnych. Dzięki tej zależności acetylocholinoesteraza i butyrylocholinoesteraza mogą być wykorzystywane w monitoringu biologicznym zatruć pestycydami jako testy wczesnego wykrywania zagrożenia.
Wstęp
W organizmie zwierząt i ludzi występują dwa enzymy z podklasy cholinoesteraz: acetylocholinoesteraza (AChE) i butyrylocholinoesteraza (BChE), znana również jako pseudocholinoesteraza. AChE występuje głównie w tkance nerwowej oraz w erytrocytach zwierząt. BChE także jest obecna w tkance nerwowej, ale w znacznie mniejszych ilościach niż AChE – większą aktywność wykazuje natomiast w surowicy krwi. Oba te enzymy są w 65% homologiczne pod względem sekwencji aminokwasowych, dlatego posiadają wiele wspólnych funkcji biologicznych. Jedną z nich jest zdolność do hydrolizy acetylocholiny (ACh) – związku pełniącego rolę przekaźnika w układzie nerwowym. Za tę funkcję odpowiada głównie AChE, jednak i BChE, mimo braku udokumentowanej znaczącej fizjologicznej roli w organizmie, wykazuje powinowactwo do tego neuroprzekaźnika (GREIG I IN., 2001). Zapobiega to nadmiernemu nagromadzaniu się acetylocholiny na zakończeniach nerwowych, dzięki czemu nie dochodzi do nadpobudzenia układu cholinergicznego (BUKOWSKA I IN., 2007).
Celem pracy jest ogólna charakterystyka cholinoesteraz jako wskaźników wykorzystywanych w monitoringu biologicznym narażenia na pestycydy.
Inhibitory cholinoesteraz
Acetylocholinoesteraza i butyrylocholinoesteraza należą do klasy hydrolaz bardzo wrażliwych na toksyczne działanie estrów fosforoorganicznych i karbaminowych (BRZEZIŃSKI I SZUTOWSKI, 2005). Estry te wchodzą w skład powszechnie stosowanych w rolnictwie pestycydów – zwłaszcza insektobójczych. Na rynku wypełniły one lukę po stosowanych powszechnie w latach 1940-1960 pestycydach chloroorganicznych (BRZEZIŃSKI I SZUTOWSKI, 2005; BOJANOWSKA I GLIWICZ, 2005). Obecnie większość pestycydów chloroorganicznych została wycofana z użycia ze względu na ich niepożądane działanie na układ endokrynny ludzi i zwierząt. Wykazywały one również negatywne oddziaływanie na ekosystemy, bowiem ulegały kumulacji zarówno w środowisku, jak i w tkankach organizmów żywych (LANGAUER-LEWOWICKA I PAWLAS, 2015). Mimo to niektóre substnacje z tej grupy, takie jak DDT (dichlorodifenylotrichloroetan), są nadal produkowane w Indiach, Chinach i Korei Północnej, a następnie eksportowane do krajów afrykańskich, gdzie mimo ich szkodliwości ciągle stosuje się je w rolnictwie oraz w celu zwalczania komarów, będących wektorami malarii (VAN DEN BERG, 2009). W porówaniu do pestycydów chloroorganicznych, estry fosforoorganiczne i karbaminowe posiadają znacznie krótszy czas karencji i dość szybko ulegają degradacji w środowisku. Ponadto po ich zastosowaniu nie wykazują one zdolności do długotrwałego odkładania się zarówno w glebie, jak i w roślinach (KILANOWICZ, 2006). Jednak i te środki ochrony roślin mają swoją ciemną stronę, bowiem wykazują wysoką toksyczność w stosunku do ludzi i zwierząt. To one właśnie, obok stosowanych w działaniach militarnych paralityczno-drgawkowych bojowych środków trujących, są głównymi związkami negatywnie wpływającymi na aktywność cholinoesteraz (POHANKA, 2013).
Pestycydy fosforoorganiczne są estrami kwasów fosforowych i tiofosforowych. Występują one głównie pod postacią krystaliczną lub jako oleista ciecz o charakterystycznym, intensywnym zapachu. Są to związki łatwo rozpuszczalne w rozpuszczalnikach organicznych, za to bardzo trudno lub nierozpuszczalne w wodzie (BRZEZIŃSKI I SZUTOWSKI, 2005). Historia pestycydów fosforoorganicznych sięga 1934 roku, kiedy to w Niemczech prowadzono pionierskie badania nad możliwością zastosowania tych związków w rolnictwie (KILANOWICZ, 2006). Pierwszymi zsyntetyzowanymi insektycydami z tej grupy były tetraetylopriofosforan (TEPP) oraz paration (E-605). Estry te wykazywały bardzo dużą toksyczność, dlatego nie były one wykorzystywane na szeroką skalę. W Polsce paration należy do związków biologicznie czynnych, których stosowanie jest zabronione (WALESIUK I IN., 2010). Obecnie grupa pestycydów fosforoorganicznych liczy kilkadziesiąt związków o różnej budowie, właściwościach i toksyczności - większość z nich zalicza się do bardzo toksycznych trucizn I i II klasy. Mimo to są one powszechnie wykorzystywane zarówno na polach uprawnych, jak i w sadach – często pod postacią złożonych preparatów składających się także z innych, należących do insektycydów substancji jak karbaminiany (BRZEZIŃSKI I SZUTOWSKI, 2005). Związki fosforoorganiczne wchłaniane są do organizmu przez układ oddechowy i pokarmowy. Po dostaniu się do ustroju powodują gwałtowne zatrucia ostre i podostre oraz wykazują działanie neurotoksyczne w stosunku do OUN (KILANOWICZ, 2006). Charakterystyczne objawy pojawiają się zależnie od wchłoniętej dawki – maksymalnie po upływie godziny. Trucizna pobudza układ parasympatyczny powodując między innymi wzmożone wydzielanie potu, śliny i łez oraz niekontrolowane wydalanie moczu oraz kału. Ponadto działa na receptory nikotynowe, przez co pojawiają się odrętwienia i drżenia mięśni. Zaburzona zostaje także praca układu krążenia, co często prowadzi do zapaści. Zgon w wyniku zatrucia następuje najczęściej wskutek porażenia ośrodka oddechowego. Dawka śmiertelna dla dorosłego człowieka to w zależności od rodzaju związku fosforoorganicznego od 30 do 120 mg substancji. W zestawieniu z innymi pestycydami, organofosforowe inhibitory ChE cechują się bardzo wysoką śmiertelnością, sięgającą nawet 70% (BRZEZIŃSKI I SZUTOWSKI, 2005).
wstecz Podziel się ze znajomymi
Recenzje