- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Cytochrom c – Fizjologia życia i śmierci komórki
CYTOCHROM C W WEWNĘTRZNYM SZLAKU APOPTOTYCZNYM
Historia badań nad udziałem cyt c w programowanej śmierci komórek ssaczych zaczęła się od wyizolowania czynników biorących udział w inicjacji procesów prowadzących ostatecznie do śmierci komórki. Wyróżniono wtedy szereg związków nazwanych apoptotycznymi czynnikami aktywującymi proteazy – Apaf 1-3 (ang. apoptotic protease activating factors) (REED, 1997; OW I IN., 2008). Późniejsze badania pozwoliły na identyfikację poszczególnych związków, którymi okazały się kolejno Apaf-1 – czynnik aktywujący proteazy (ang. apoptosis activating factor 1), Apaf-2 – cytochrom c i Apaf-3 – prokaspaza 9 (SKULACHEV, 1998). Dzisiaj wiadomo, że kompleks zawierający wspomniane związki jest apoptosomem, a do jego funkcji należy aktywacja kaspazy 3. Co więcej, poprzez badanie czynników biorących udział w przebiegu programowanej śmieci komórek różnych gatunków dowiedziono konserwatywnego charakteru przebiegu tego procesu. W komórkach modelowego organizmu, jakim jest nicień Caenorhabditis elegans odkryto szereg białek biorących udział w PCD będących homologami ssaczych białek procesu śmierci komórek. Przykładowo, ssacze białko Apaf-1 jest homologiem pochodzącego od nicienia białka CED-4 (ang. Caenorhabditis elegans death protease-4) . Z kolei ssacze białko Bcl-2 (ang. B-cell leukemia/lymphoma-2), pełniące funkcję antyapoptotyczną, ma swój odpowiednik w białku CED-9 pochodzącym od nicienia C. elegans (CONRADT I XUE, 2005). Pomimo homologii białek, ich rola i szlaki wykonawcze z nimi związane nie są identyczne (CAI I IN., 1998).
W szlaku apoptotycznym zachodzącym z udziałem mitochondriów po otrzymaniu bodźca stymulującego proces śmierci komórkowej dochodzi do wypływu przez zewnętrzną błonę mitochondrialną cyt c (REED, 1997). Jedna z teorii dotyczących uwolnienia cyt cz przestrzeni międzybłonowej do cytozolu zakłada udział powstających w czasie śmierci komórkowej megakanałów, tzw. PTP (ang. permeability transition pore) pozwalających na wnikanie wody do wnętrza mitochondriów, co powoduje rozerwanie zewnętrznej błony. W tym procesie mogą uczestniczyć jony wapnia, pochodzące np. z retikulum endoplazmatycznego, uwalniane poprzez kanały CRAC (ang. calcium release activated calcium channel) (FESKE, 2010). Drugi mechanizm możliwy jest dzięki zdolności transportu cyt c poprzez znajdujące się w zewnętrznej błonie mitochondrialnej bramkowane napięciem kanały anionowe, VDAC (ang. voltage dependent anion channel) (BALK I IN., 1999). W wielu przebadanych układach obserwowano także uwolnienie cyt c i aktywację kaspaz, pomimo zachowania ciągłości błon mitochondrialnych (CAI I IN., 1998). Uwolnienie cyt c możliwe jest dzięki luźnemu przyłączeniu tego związku do składników wewnętrznej błony mitochondrialnej (w tym w postaci interakcji elektrostatycznych z fosfolipidami błonowymi; GARRIDO I IN., 2006). Peroksydacja kardiolipin obecnych w wewnętrznej błonie mitochondrialnej (OW I IN., 2008), do której w około 90% przyłączony jest cyt c, przyczynia się także do uwolnienia tego związku docytozolu. Wówczas nie spełnia on swojej roli w reakcjach redox (MARTÍNEZ-FÁBREGAS I IN., 2014). Badania wykazały, że podstawowa forma kardiolipin wykazuje wyższe powinowactwo do cyt c niż jej forma utleniona (OW I IN., 2008). Ta zależność jest ściśle związana z funkcjonowaniem pro-apoptotycznych białek z rodziny Bcl-2. Utlenianie kardiolipin może zachodzić z udziałem fosfolipazy A oraz poprzez działanie RFT lub poprzez kompleks kardiolipina-cytochrom c. Łączenie się cyt c z kardiolipinami zależy także od cytozolowego poziomu jonów wapnia, którego wyższe stężenie osłabia elektrostatyczne wiązania pomiędzy cyt c a kardiolipinami. Co więcej, udział RFT w uwalnianiu cyt c jest mechanizmem samonapędzającym się. Uwolnienie cyt c z przestrzeni międzybłonowej i jego niedobór w szlaku transportu elektronów powoduje znaczne zwiększenie produkcji RFT, których działanie powoduje uszkodzenie składników błon komórkowych, w tym błony mitochondrialnej i dalsze zwiększenie jej przepuszczalności (POTARGOWICZ I IN., 2005; OW I IN., 2008).
W uwolnieniu cyt c z przestrzeni międzybłonowej biorą udział wspomniane już białka z rodziny Bcl-2, wśród których wyróżnia się białka o właściwościach pro- i antyapoptotycznych. Do pierwszej grupy zalicza się m.in. cytozolowe białka: Bax (ang. Bcl-2-associated X protein), Bad (ang. Bcl-2-associated death promotor), Bid (ang. BH3-interacting domain death agonist), Bcl-Xs (ang. B-cell lymphoma-extra large), Bak1 (ang. Bcl-2-antagonist/killer 1), Bik (ang. Bcl-2-interacting killer). Natomiast do lepiej poznanych białek antyapoptotycznych zaliczamy białka: Bcl-2, Bcl-w (ang. Bcl-2 like 2), Bcl-XL (ang. Bcl-2 like protein extra large) i Mcl-1 (ang. myeloid cell leukemia sequence-1) (GALLUZZI I IN., 2015). Obserwacją, która pozwoliła na stwierdzenie antyapoptotycznych właściwości białek Bcl-2 i Bcl-XL była nadekspresja ich genów, która zapobiegała uwolnieniu cyt c z przestrzeni międzybłonowej, a przez to chroniła komórki przed śmiercią. Białka te pełnią rozliczne funkcje (np. biorą udział w formowaniu kanałów transportujących jony) i są tylko pośrednio związane ze śmiercią komórkową (mogą pełnić rolę przenośników białek poprzez błonę, a w tym cyt c) ( CAI I IN., 1998).
Tagi: cytochrom c, oddychanie wewnątrzkomórkowe, łańcuch transportu elektronów, apoptosom, programowane śmierć komórki
wstecz Podziel się ze znajomymi
Recenzje