- Biochemia
- Biofizyka
- Biologia
- Biologia molekularna
- Biotechnologia
- Chemia
- Chemia analityczna
- Chemia nieorganiczna
- Chemia fizyczna
- Chemia organiczna
- Diagnostyka medyczna
- Ekologia
- Farmakologia
- Fizyka
- Inżynieria środowiskowa
- Medycyna
- Mikrobiologia
- Technologia chemiczna
- Zarządzanie projektami
- Badania kliniczne i przedkliniczne
Cytochrom c – Fizjologia życia i śmierci komórki
Mechanizm aktywacji PCD u roślin może zależeć od czynnika aktywującego. W przypadku samoniezgodności pyłkowej typu Papaveraceae wskazuje się na związek aktywacji PCD z kaskadą sygnałową zależną od jonów wapnia, która inicjuje uwolnienie cyt c z mitochondrium i działaniem proteazy podobnej do kaspazy 3 przy współudziale kinaz szlaku MAP (ang. mitogen activated protein) (GADJEV I IN., 2008). Natomiast w przypadku PCD wywołanej szokiem cieplnym dochodzi do powstania nadmiaru perhydrolu (H2O2), co prowadzi do uwolnienia cyt c z mitochondriów, po czym następuje aktywacja wspomnianej powyżej proteazy kaspazo-3-podobnej oraz inicjacja proteolizy zależnej od proteasomów. Proces ten może być zahamowany z udziałem enzymów o działaniu antyoksydacyjnym (w tym dysmutaz ponadtlenkowych i zmiataczy wolnych rodników, takich jak glutation i związki fenolowe) (DONIAK I IN., 2016) oraz specyficznych inhibitorów kaspazy 3, takich jak XIAP (ang. X-linked inhibitor of apoptosis) (GADJEV I IN., 2008; GALLUZZI I IN., 2015).
Kontrastem dla wyników powyższych badań przeprowadzonych na modelach roślinnych jest wykazanie, że pomimo indukcji procesu śmierci, np. w komórkach obumierających płatków kwiatów petunii (Petunia sp.), nie dochodzi do uwolnienia cyt c z mitochondriów (HOEBERICHTS I WOLTERING, 2002). Ciekawym jest, że dodanie wyizolowanego roślinnego cyt c do hodowli komórek zwierzęcych nie indukuje apoptozy ani apoptozo-podobnej śmierci komórkowej (REAPE I MCCABE, 2010), tak samo jak w przypadku roślin, gdzie jego nadmiar w czystej postaci nie jest wystarczającym warunkiem indukcji PCD.
Jak już wcześniej opisano, nadprodukcja RFT ma kluczowe znaczenie w śmierci komórek roślinnych. Głównymi generatorami tych związków są mitochondria i chloroplasty. U rośliny modelowej – Arabidopsis w organellach tych znajdują się opisane przez NOCTOR I IN. (2006) specyficzne białka ACD2 (ang. accelerated cell death 2), które ograniczają poziom RFT poprzez ich łączenie z hemowymi i porfirynowymi cząsteczkami. Dzięki temu możliwa jest redukcja symptomów śmierci komórkowej wywołanej infekcją wirusową. Odwrotne zjawisko obserwuje się w roślinach ze zmutowanym genem acd2.
WSPÓLNY DLA ROŚLIN I ZWIERZĄT MECHANIZM KONTROLI PRZEBIEGU PROCESU PCD Z UDZIAŁEM CYTOCHROMU C
Stwierdzono, że cyt c w przeważającej części wyników badań wchodzi w interakcje z antyapoptotycznymi i pro-życiowymi białkami, zarówno na terenie cytoplazmy jak i jądra komórkowego, tak u zwierząt jak i roślin.
W komórkach ludzkich najważniejszym w tym zakresie był czynnik transkrypcji ANP32B (ang. acidic nuclear phosphoprotein 32 member), czynnik uszkadzający DNA – SET (ang. SET nuclear oncogene) – jądrowy onkogen i hnRNP C1/C2 (ang. heterogeneous nuclear ribonucleoprotein C1/C2) oraz czynnik metabolizmu DNA – MCM6 (ang. minichromosome maintenance complex 6). Na terenie cytoplazmy cyt c wchodził w interakcje z czynnikami szlaku wspomagającego przeżycie, a w szczególności STRAP (ang. Ser/Thr kinase receptor associated protein), podjednostką YWHAE białka 1433 (ang. 14-3-3 epsilon) HSPA5 (ang. heat shock 70-kDa protein 5) i NCL (ang. nucleolin) oraz z białkami syntezy protein eIF2a (ang. eukaryotic translation initiation factors 2 a) i kontroli metabolizmu przemiany energii ALDOA (ang. aldolase A) (MARTÍNEZ-FÁBREGAS I IN., 2014).
W przypadku roślin były to czynniki kontroli procesu fałdowania – BiP1 i BiP2 (ang. luminal-binding protein 1 i 2) – i syntezy białek – eIF2g, i podobnie jak u człowieka, czynniki przemian energetycznych – GAPC1 (ang. glyceraldehyde-3-phosphate dehydrogenase C subunit 1), czynniki uszkodzeń DNA – NRP1 (ang. nucleosome assembly protein 1-related protein 1) i metabolizmu mRNA – TCL (ang. transcriptional coactivator-like) i Sm/D1 (ang. small nuclear ribonucleoprotein D1). U roślin cyt c wchodził także w interakcje z białkami o kluczowym znaczeniu dla PCD, a w szczególności RD21 (proteaza cysteinowa) i białkami stresu oksydacyjnego GLY2 (ang. hydroxyacylglutathione hydrolase) (MARTÍNEZ-FÁBREGAS I IN., 2014).
Porównując docelowe białka dla cyt c u roślin i zwierząt okazało się, że niektóre z nich pełnią analogiczne funkcje. Na przykład SET jest analogiem NRP1, a HSPA5 był analogiem BiP1-BiP2. Podczas gdy, IF2a i eIF2g są komponentami heterotrimerycznego kompleksu eIF2, natomiast ALDOA i GAPC1 są enzymami glikolitycznymi, odpowiednio produkującymi jak i wykorzystującymi aldehyd 3-fosfoglicerynowy (MARTÍNEZ-FÁBREGAS I IN., 2014).
Część z powyższych czynników uczestniczy w regulacji procesów kontrolujących w komórkach ludzkich proces apoptozy i makroautofagii. Tak oto, eIF2a podlega regulacji z udziałem kinazy aktywowanej przez dsRNA (PKR; ang. protein kinase RNA-activated) w odpowiedzi na uszkodzenia DNA lub na skutek aktywacji białka p53. Ponadto fosforylacja eIF2a zapobiega jego trimeryzacji, która jest konieczna do aktywacji genów kodujących czynniki proapototyczne oraz ekspresji czynnika transkrypcji 4 (ATF4; ang. cAMP response element-binding transcription factor 4) prowadzącej do autofagii. Natomiast SET jest inhibitorem acetylacji białka p53, który może wywołać blokowanie zarówno cyklu komórkowego będącego pod kontrolą między innymi p53 jak i apoptozy w odpowiedzi na stres komórkowy. W końcu, HSPA5 będący inhibitorem kinazy retikulum endoplazmatycznego, fosforyluje czynnik eIF2a (MARTÍNEZ-FÁBREGAS I IN., 2014).
Tagi: cytochrom c, oddychanie wewnątrzkomórkowe, łańcuch transportu elektronów, apoptosom, programowane śmierć komórki
wstecz Podziel się ze znajomymi
Recenzje